USING BIOINFORMATICS TOOLS ON RIVANNA

Gladys K Andino, PhD Senior Computational Scientist E gka6a@virginia.edu

OUTLINE

- Logging in
 - OOD
 - MobaXterm PC (ssh, shell, SFTP)
 - Terminal/SSH Mac
- Basic Unix commands
- Modules -How to load modules
- Practical
 - Fastqc
 - Trimmomatic
 - Bowtie2
 - Samtools
 - Qualimap

LOGGING IN

- Logging into a remote UNIX based system requires a client
- Based on the "SSH" or Secure Shell protocol
 - Encrypted
 - Used on most UNIX systems
 - Variety of clients for all platforms

LOGGING IN – using a MAC

- Mac OS X has built in Terminal app that can use SSH
- Open Finder and Go to Applications

Utilities > Terminal app

Connect using ssh -Y username@rivanna.hpc.virginia.edu

LOGGING IN – using MobaXterm

https://www.rc.virginia.edu/userinfo/rivanna/login/

Research Computing

Creating innovative solutions for researchers

MobaXterm

« Return to Rivanna Overview

MobaXterm is the recommended login tool for Windows users. It bundles a tabbed ssh client, a graphical drag-and-drop sftp client, and an X11 window server for Windows, all in one easy-to-use package. Some other tools included are a simple text editor with syntax coloring and several useful Unix utilities such as cd, ls, grep, and others, so that you can run a lightweight Linux environment on your local machine as well as use it to log in to a remote system.

Download

To download MobaXterm, click the link below. Select the "Home" version, "Installer" edition,

Download MobaXterm

Run the installer as directed.

Download

Connecting

Page Contents

Access from Off Grounds

Rivanna Reference

Rivanna Overview Request an Allocation Logging In Transfer Files Run Jobs using SLURM HPC Software & Modules Queues HPC Storage FAQs Unix Tutorials

UNREGISTERED VERSION - Please support MobaXterm by subscribing to the professional edition here: https://mobaxterm.mobatek.net

LOGGING IN - using (OOD)

https://www.rc.virginia.edu/userinfo/rivanna/ood/overview/

- OpenOnDemand is a graphical user interface that allows you to examine and manipulate files and submit jobs.
- It is very easy and intuitive but, is limited. It's a good way to get started.
- OOD also provides portals to applications such as Jupyterlab and R Studio Server.
- When you first log in (**through Netbadge**) you will see the Dashboard.

LOGGING IN - using FASTX WEB

From the Dashboard go to Interactive Apps > FastX web

C A rivanna-portal.hpc.virginia.edu/pun/sys/dashboard	3/		२ 🖈 🛛 🚱 🔅 :
🗄 Apps 📒 Bible.com ★ Bookmarks 📄 Bioinfo-tools 📄 UVA_RC 🕋	UVA Research Co 🚔 PurdueFed 🛛 G Google 🧕 WhatsApp 📑 Facebook 🛷 ResearchComputing	FootPrints	» 🗎 Other Bookmarks
UVA OpenOnDemand Files - Jobs - Clusters -	Interactive Apps - Apps -	Help -	Logged in as gka6a
	Desktops		
UNIVERSITY VIRGINIA	GUIs		
OnDemand provides an integrated	Require UVA network		
Message of the Day	Servers		
2019-10-08 Scratch Directory	ë JupyterLab ✿ RStudio Server	(00.1	

RC system engineers will begin actively clearing / is sold beginning 10/14/2019. /scratch is intended as temporary storage (90 days maximum) for active work. It is not backed up and needs to be purged periodically in order to maintain a stable HPC environment. We encourage users to back up their important data. RC offers several low-cost storage options to researchers. For more information, visit https://www.rc.virginia.edu/userinfo/rivanna/storage/

OnDemand version: v1.6.20 | Dashboard version: v1.35.3

COMMAND LINE - REVIEW

Using Rivanna from the Command Line https://learning.rc.virginia.edu/notes/rivanna-command-line/

COMMAND LINE - BASICS

- List a directory
 ls -l {path}
 ls -a {path}
 ls {path} | more
- Change to directory cd {dirname} cd ~ cd ..
- Make a new directory mkdir {dirname}
- Remove a directory rmdir {dirname} rm -r {dirname}
- Print working directory pwd

Copy a file or directory
 cp {file1} {file2}
 cp -r {dir1} {dir2}
 cat {newfile} >> {oldfile}

- Move (or rename) a file
 mv {oldfile} {newfile} # change
 name
 mv {oldname} {newname}
- Delete a file rm {filename}
- View a text file more {filename} less {filename} cat {filename}

LET'S GRAB SOME FILES

YOUR DIRECTORIES – ON RIVANNA

- The default /home directory has 50GB of storage capacity.
 - The home directory is for personal use and is not shareable with other users.
- Secondary directory /scratch each user will have access to 10 TB of temporary storage.
 - It is located in a subdirectory under /scratch, and named with your userID
 - **e.g.**, /scratch/gka6a
 - You are limited to 350,000 files in your scratch directory.
 - The $\mbox{scratch}$ directory is for personal use and is not shareable with other users

Important:

/scratch is NOT permanent storage and files that have not been accessed for more than 90 days will be marked for deletion.

CHECKING YOUR STORAGE

• To see how much disk space you have used in your home directory, open a terminal window and type hdquota at the command-line prompt:

\$ hdquota

Туре	Location		Name	Name			Size Used Avail Use%			
home Project Project Project Project Value	/home /proje /proje /proje /proje /nv	ect ect ect ect	gka6a slurmtes arcs rivanna ds5559 vol174	sts _softw	vare	51G 2.0P 16T 1.1T 51G 5.5T	12G 1.9P 12T 4.2M 3.7G 1.2T	39G 144T 3.8T 1.0T 47G 4.4T	24% 93% 75% 1% 8% 21%	
Location	n 1	Age_Li	.mit(Days)	Disk_	_Limit(GB)	Use(G	B) Fil	e_Limi 	t	Use
/scratcl	n/gka6a		90	1024	10	 541	3	50000		1273

https://www.rc.virginia.edu/userinfo/storage/

MODULES COMMANDS

- module spider
 - List all available packages (may be a lot!)
- module spider <package>
 - List all versions of <package>, if any
- module spider <package>/<version>
 - Describes how to load <package>/<version>. There may be prerequisite modules.
- module list
 - List modules loaded in current shell
- module purge
 - Remove all module modifications to the environment
- module load <package>/[<version>]
 - Load the module for (optionally) <version> of <package>
- module unload <package>
 - Delete the changes made by the <package> module
- module swap <package>/<current> <package>/<newver>
 - Exchange one version of a package for another

MODULES - DETAILS

- Any application software that you want to use will need to be loaded with the module load command.
- For example:
 - module spider fastqc
 - module load fastqc/0.11.5
 - module list
- You will need to load the module any time that you create a new shell
 - Every time that you log out and back in
 - Every time that you run a batch job on a compute node

MODULES - DETAILS

https://www.rc.virginia.edu/userinfo/rivanna/software/modules/

- \$ qlist # Usage: qlist [-p] [-c] [-m]
- \$ hdquota
- \$ sbatch
- \$ squeue -u \$USER
- \$ scontrol show job <jobid>
- $\$ squeue --start -j <jobid> # to request an estimate when your pending job will run

QUEUES/PARTITIONS

SLURM refers to queues as **partitions**. We do not have a default partition; each job must request one explicitly.

Queue Name	Purpose	Job Time Limit	Memory / Node	Cores / Node
standard	For jobs on a single compute node	7 days	256 GB 384 GB	28 40
gpu	For jobs that can use general purpose graphical processing units (GPGPUs) (K80, P100 and V100)	3 days	256 GB	28
parallel	For large parallel jobs on up to 120 nodes (<= 2400 CPU cores)	3 days	128 GB	20
largemem	For memory intensive jobs (<= 16 cores/node)	4 days	1 TB	16
dev	To run jobs that are quick tests of code	1 hour	128 GB	4

QUEUES/PARTITIONS

SLURM refers to queues as **partitions**. We do not have a default partition; each job must request one explicitly.

\$qlist

Queue	Total	Free	Jobs	Jobs	Time	SU
(partition)	Cores	Cores	Running	Pending Limit		Charge
=======================================	===========	============		==========	=======================================	========
bii	4600	2427	40	41	7-00:00:00	1
standard	3660	1020	766	121	7-00:00:00	1
dev	2820	2106	0	0	1:00:00	0
parallel	3900	2898	11	0	3-00:00:00	1
instructional	600	336	0	0	3-00:00:00	1
largemem	80	60	3	0	4-00:00:00	1
gpu	364	272	27	4	3-00:00:00	3
bii-gpu	320	316	1	0	3-00:00:00	1
knl	2048	1024	0	0	3-00:00:00	1
pcore	144	72	0	1246	infinite	1

CHECKING YOUR ALLOCATION

To see how many SUs you have available for running jobs, type at the command-line prompt: **allocations**

\$ allocations

Allocations available to Gladys_Karina_Andino_Bautista (gka6a):

* arcs_admin: less than 500 service-units remaining

- * ds5559: less than 25,000 service-units remaining
- * ga_bioinfo-test: less than 100,000 service-units remaining
- * hpc_build: less than 203,417 service-units remaining
- * rivanna-training: less than 20,000 service-units remaining

for more information about a specific allocation, please run: 'allocations -a <allocation name>'

https://www.rc.virginia.edu/userinfo/rivanna/slurm/

SEQUENCING BASICS – FASTQ FORMAT

- Typically will have the suffix .fastq or .fq
 - may be compressed .fastq.gz or .fq.gz
 - some but not all programs can read the compressed version
- Four lines per sequence
 - line 1: @Sequence ID<space>optional description
 @ often occurs in quality lines so it is an unreliable way to identify this line
 - line 2: sequence
 - line 3: + optional description (NCBI repeats ID line)
 + often occurs in quality lines so it is an unreliable way to identify this line
 - line4: quality (one value per base, Phred encoded)
- Quality is the Probability that the reported base is incorrect
 - Quality values are converted to letters in the ASCII alphabet by adding 33 to the log transformed quality
 - ascii value = quality + 33
 - other offsets than 33 are sometimes used (rare)

SEQUENCING BASICS – FASTQ FORMAT

- Quality is the probability that the reported base is incorrect
- Usually reported as Q = -10 log10 P(incorrect)
 - quality = 10 is 10 % error
 - quality = 20 is 1% error
 - quality = 30 is 0.1% error
- Encoded as a single ASCII letter
 - value = quality + 33
- Other offsets than 33 are sometimes used (rare)

SEQUENCING BASICS – FASTQ FORMAT

instrument:run:flowcell:lane:tile:x:y

pair:filtered:control:bar-code

@HISEQ02:319:C22FKACXX:2:1101:1699:1972 1:N:0:GTAGAG
GACCCATCCATTGTTGGACAGCTGAAGACGGGACGATCGTGCTCGTGTTTTGAATGCGAGAATCCCTGCAGAGGCTGCG
+

CCCFFFFFHHHHHJIJJJJGIJJJJJJJJJJJJJIIJJIIJIJAFGIJJEHHHHFFFDCDDDDDDDDDDDDD###<<@B

= ascii 35 Q = $35 - \frac{33}{2} = 2$ $\varepsilon = 10^{-0.2} = 0.63$ totally bogus

I = ascii 73 *Quality* = 73 - 33 = 40 *Quality* = -10 log₁₀ε, ε = 10⁻⁴

- Phred quality score 33 program (Phil Green, UWa) ca. 1998
- where ε is the expected error rate (probability of calling an incorrect base)

ASCII_BASE=33 Illumina, Ion Torrent, PacBio and Sanger

Q	P_error	ASCII									
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59 ;	37	0.00020	70 F
5	0.31623	38 &	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

DATA PREPROCESSING = CLEANING

- What should we clean?
 - All big data projects begin with data cleaning

FASTQC

FastQC aims to provide a simple way to do some quality control checks on raw sequence data coming from high throughput sequencing pipelines. It provides a modular set of analyses which you can use to give a quick impression of whether your data has any problems of which you should be aware before doing any further analysis.

Simon Andrews of Babraham Bioinformatics <u>https://www.bioinformatics.babraham.ac.uk/projects/fastqc/</u>

FASTQC: QC OF THE DATA

Before

After

Research Computing

FASTQC: QC OF THE DATA

Before

Research Computing

RUNNING FASTQC

- You can run FastQC in one of two modes, either as an interactive graphical application in which you can dynamically load FastQ files and view their results.
- Alternatively you can run FastQC in a non-interactive mode where you specify the files you want to process on the command line and FastQC will generate an HTML report for each file without launching a user interface. This would allow FastQC to be run as part of an analysis pipeline.

RUNNING FASTQC

- Homepage: https://www.bioinformatics.babraham.ac.uk/projects/fastqc

\$ module load fastqc
\$ ml # short for module list
Currently Loaded Modules:

1) java/1.8.0 2) fastqc/0.11.5

\$ module show fastqc

/apps/modulefiles/standard/core/fastqc/0.11.5.lua:

Description

FastQC is a Java application which takes a FastQ file and runs a series of tests on it to generate a comprehensive QC report. More information

- Homepage: https://www.bioinformatics.babraham.ac.uk/projects/fastqc whatis("Description: FastQC is a Java application which takes a FastQ file and runs a series of tests on it to generate a comprehensive QC report.") whatis("Homepage:

https://www.bioinformatics.babraham.ac.uk/projects/fastqc")
setenv("EBROOTFASTQC","/apps/software/standard/core/fastqc/0.11.5")
setenv("EBVERSIONFASTQC","0.11.5")

...as an interactive graphical application in which you can dynamically load FastQ files and view their results.

- Open FastX web
- Start an interactive job

ijob -N1 -c 1 --ntasks=1 -J fastqc-inte -p standard -A rivanna-training

• Load the module

module load fastqc module list fastqc &

From the Dashboard go to Interactive Apps > FastX web

OnDemand version: v1.6.20 | Dashboard version: v1.35.3

FastX web > + > Terminal > Launch

Terminal

Alate Terminal	_ @ x
gka6a@rivanna-gpu:/sfs/qumulo/qhome/gka6a]	
\$hostname	
Sijob -N1 -c1 -J fastgc-inter -p standard -A rivanna-training -t 01:00:00	
<pre>salloc: Pending job allocation <u>18866345</u> salloc: job 18866345 queued and waiting for resources salloc: job 18866345 has been allocated resources salloc: Granted job allocation 18866345</pre>	
<pre>\$hostname udc-aw29-19b module load fastqc ml</pre>	
Currently Loaded Modules: 1) java/1.8.0 2) fastqc/0.11.5	

...another way but slower

• ssh with –Y

ssh -Y gka6a@rivanna.hpc.virginia.edu

• Start an interactive job

ijob -N1 -c 1 --ntasks=1 -J fastqc-inte -p standard -A rivanna-training

• Load the module module load fastqc module list fastqc &

• Alternatively you can run FastQC in a non-interactive mode where you specify the files you want to process on the command line and FastQC will generate an HTML report for each file without launching a user interface. This would allow FastQC to be run as part of an analysis pipeline.

\$ fastqc

\$ ijob -N1 -c 4 --ntasks=1 -J fastqc-inte -p standard -A rivanna-training salloc: Pending job allocation 5192794 salloc: job 5192794 queued and waiting for resources salloc: job 5192794 has been allocated resources salloc: Granted job allocation 5192794 srun: Step created for job 5192794

\$ module load fastqc

time fastqc -t 4 -o fastqc-raw SRR5992812_1.fastq Started analysis of SRR5992812_1.fastq Approx 5% complete for SRR5992812_1.fastq Approx 95% complete for SRR5992812_1.fastq Analysis complete for SRR5992812_1.fastq

real 0m54.300s

user 0m51.677s

sys 0m1.051s

#!/bin/bash #SBATCH -N 1 #SBATCH --ntasks=1 #SBATCH -c 6 #SBATCH -p standard #SBATCH -A rivanna-training #SBATCH -t 01:00:00 #SBATCH -J fastqc #SBATCH -J fastqc #SBATCH --output=%x_%j.out #SBATCH --error=%x_%j.err

load modules
module purge
module load fastqc
module list

cd \$SLURM_SUBMIT_DIR pwd

```
cat $0
date +"%d %B %Y %H:%M:%S"
echo " "
```

raw data, pre cleaning fastqc
data formats .fastq,.fq,.fastq.gz

```
mkdir fastqc_raw
fastqc -t $SLURM_CPUS_PER_TASK \
-o fastqc raw *.fastq.gz
```

echo " " date +"%d %B %Y %H:%M:%S"

change to working directory

FASTQC - RESULTS

- SRR2584863_1_fastqc.html
- SRR2584863_1_fastqc.zip
- SRR2584863_2_fastqc.html
- SRR2584863_2_fastqc.zip
- SRR2584866_1_fastqc.html
- SRR2584866_1_fastqc.zip
- SRR2584866_2_fastqc.html
- SRR2584866_2_fastqc.zip
- SRR2589044_1_fastqc.html
- SRR2589044_1_fastqc.zip
- SRR2589044_2_fastqc.html
- SRR2589044_2_fastqc.zip

RUNNING - RESULTS

Research Computing

TRIMMOMATIC - PE

- Trimmomatic: A flexible read trimming tool for Illumina NGS data: <u>http://www.usadellab.org/cms/?page=trimmomatic</u>
- Paired End Mode:
- Single End Mode:

Usage:

```
PE [-version] [-threads <threads>] [-phred33|-phred64] [-trimlog
<trimLogFile>] [-summary <statsSummaryFile>] [-quiet] [-validatePairs] [-
basein <inputBase> | <inputFile1> <inputFile2>] [-baseout <outputBase> |
<outputFile1P> <outputFile1U> <outputFile2P> <outputFile2U>] <trimmer1>...
```

```
ILLUMINACLIP:?\
LEADING:? \
TRAILING:? \
SLIDINGWINDOW:?:? \
```

MINLEN:?

\$ module spider trimmomatic

trimmomatic:

Description Trimmomatic performs a variety of useful trimming tasks for illumina paired-end and single ended data.

Versions:

trimmomatic/0.36

trimmomatic/0.39

For detailed information about a specific "trimmomatic" package (including how to load the modules) use the module's full name.

Note that names that have a trailing (E) are extensions provided by other modules.

For example:

\$ module spider trimmomatic/0.39

\$ module load trimmomatic/0.39

\$ module show trimmomatic/0.39

/apps/modulefiles/standard/core/trimmomatic/0.39.lua:

Description

===========

Trimmomatic performs a variety of useful trimming tasks for illumina paired-end and single ended data.

More information

whatis("Homepage: http://www.usadellab.org/cms/index.php?page=trimmomatic")
setenv("EBROOTTRIMMOMATIC","/apps/software/standard/core/trimmomatic/0.39")

- \$ head SRR2584863_1.fastq
- \$ tail SRR2584863_1.fastq
- \$ grep -c "@SRR2584863" SRR2584863 1.fastq
- \$ wc -1 SRR2584863_1.fastq

SRR2584863 1.fastq

- SRR2584863 2.fastq
- SRR2584866_1.fastq
- SRR2584866_2.fastq
- SRR2589044_1.fastq

SRR2589044_2.fastq

 We are going to run Trimmomatic on the paired-end samples (PE).
 While using FastQC we saw that Nextera adapters were present in our samples. The adapter sequences come with the installation of trimmomatic.

<pre>\$ ls -1 \$EBROOTTRIMMOMATIC/adapters</pre>								
-rw-rr	1	uvacse	users	239	Мау	16	2018	NexteraPE-PE.fa
-rw-rr	1	uvacse	users	538	May	16	2018	TruSeq2-PE.fa
-rw-rr	1	uvacse	users	142	May	16	2018	TruSeq2-SE.fa
-rw-rr	1	uvacse	users	259	May	16	2018	TruSeq3-PE-2.fa
-rw-rr	1	uvacse	users	93	May	16	2018	TruSeq3-PE.fa
-rw-rr	1	uvacse	users	119	May	16	2018	TruSeq3-SE.fa

- LLUMINACLIP: Cut adapter and other illumina-specific sequences from the read.
- **SLIDINGWINDOW**: Perform a sliding window trimming, cutting once the average quality within the window falls below a threshold.
- LEADING: Cut bases off the start of a read, if below a threshold quality
- TRAILING: Cut bases off the end of a read, if below a threshold quality
- MINLEN: Drop the read if it is below a specified length
- **TOPHRED33**: Convert quality scores to Phred-33

```
ILLUMINACLIP:adap.fa:2:40:15 \
LEADING:10 \
TRAILING:10 \
SLIDINGWINDOW:4:20 \
MINLEN:30
```

This will perform the following:

- Remove adapters (ILLUMINACLIP:illumina-adap.fa:2:40:15)
- Remove leading low quality or N bases (below quality 10) (LEADING:10)
- Remove trailing low quality or N bases (below quality 10) (TRAILING:10)
- Scan the read with a 4-base wide sliding window, cutting when the average quality per base drops below 20 (SLIDINGWINDOW:4:20)
- Drop reads below the 30 bases long (MINLEN:30)

brute force

```
java -jar $EBROOTTRIMMOMATIC/trimmomatic-0.39.jar PE -threads 12 \
SRR2584863_1.fastq SRR2584863_2.fastq \
SRR2584863_1.paired.fastq SRR2584863_1.unpaired.fastq \
SRR2584863_2.paired.fastq SRR2584863_2.unpaired.fastq \
ILLUMINACLIP:$EBROOTTRIMMOMATIC/adapters/NexteraPE-PE.fa:2:40:15 \
LEADING:10 \
TRAILING:10 \
SLIDINGWINDOW:4:20 \
MINLEN:30
```

duplicate 2 more times, changing the sample name
error prone

<u>Trimmomatic</u>: a flexible trimmer for Illumina sequence data Tutorial: <u>http://www.usadellab.org/cms/?page=trimmomatic</u>


```
# this is the trimming command definition. Each command executed
# in the order given. Adapter trimming should go first, if used
trimmer="ILLUMINACLIP:adapter.fa:2:40:15 \
LEADING:10 \
TRAILING:10 \
SLIDINGWINDOW:4:20 \
MINLEN:30 "
samples="SRR2584863 1.fastq SRR2584866 1.fastq SRR2589044 1.fastq"
# for each sample read 1, generate the read 2 name be replacing .1. with .2.
# generate the paired and unpaired output file names by replacing .fastg with
# paired.fastg or unpaired.fastg
for r1 in $samples; do
    r2="${r1/ 1./ 2.}"
    rlp="${rl/.fastg/.paired.fastg}"
    rlu="${rl/.fastg/.unpaired.fastg}"
    r2p="${r2/.fastq/.paired.fastq}"
    r2u="${r2/.fastg/.unpaired.fastg}"
    command="trimmomatic PE -threads 5 \
    data/$r1 data/$r2 \
    $r1p $r1u ∖
    $r2p $r2u \
    $trimmer"
   echo $command
done
wait
```


TRIMMOMATIC - RESULTS

ls -1 *.paired*
SRR2589044_1.paired.fastq
SRR2589044_2.paired.fastq
SRR2584863_1.paired.fastq
SRR2584866_2.paired.fastq
SRR2584866_2.paired.fastq

SRR2589044 1.paired.fastq Number of reads: 865259 Number of bases in reads: 123340363 SRR2589044 2.paired.fastq Number of reads: 865259 Number of bases in reads: 109997636 SRR2584863 1.paired.fastq Number of reads: 1245672 Number of bases in reads: 177460402 SRR2584863 2.paired.fastq Number of reads: 1245672 Number of bases in reads: 156393202 SRR2584866 1.paired.fastq Number of reads: 1997025 Number of bases in reads: 263177758 SRR2584866 2.paired.fastq Number of reads: 1997025 Number of bases in reads: 285357086

TRIMMOMATIC - RESULTS

• SRR2589044

Input Read Pairs: 1107090 Both Surviving: 865259 (78.16%) Forward Only Surviving: 231726 (20.93%) Reverse Only Surviving: 4206 (0.38%) Dropped: 5899 (0.53%)

• SRR2584863

TrimmomaticPE: Completed successfully

Input Read Pairs: 1553259 Both Surviving: 1245672 (80.20%) Forward Only Surviving: 293049 (18.87%) Reverse Only Surviving: 6124 (0.39%) Dropped: 8414 (0.54%)

• SRR2584866

TrimmomaticPE: Completed successfully

Input Read Pairs: 2768398 Both Surviving: 1997025 (72.14%) Forward Only Surviving: 612822 (22.14%) Reverse Only Surviving: 139086 (5.02%) Dropped: 19465 (0.70%)

BOWTIE2

- <u>http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#introduction</u>
- <u>https://www.rc.virginia.edu/userinfo/rivanna/software/bowtie2/</u>
- Bowtie 2 is an ultrafast and memory-efficient tool for aligning sequencing reads to long reference sequences.
- It is particularly good at aligning reads of about 50 up to 100s or 1,000s of characters, and particularly good at aligning to relatively long (e.g. mammalian) genomes.
- Bowtie 2 indexes the genome with an FM Index to keep its memory footprint small: for the human genome, its memory footprint is typically around 3.2 GB. Bowtie 2 supports gapped, local, and paired-end alignment modes.

BOWTIE2

- bowtie2 takes a Bowtie 2 index and a set of sequencing read files and outputs a set of alignments in SAM format.
- "Alignment" is the process by which we discover how and where the read sequences are similar to the reference sequence.
- An "alignment" is a result from this process, specifically: an alignment is a way of "lining up" some or all of the characters in the read with some characters from the reference in a way that reveals how they're similar.

For example:

Read:GACTGGGCGATCTCGACTTCG|||||||||||Reference:GACTG--CGATCTCGACATCG

Where dash symbols represent gaps and vertical bars show where aligned characters match.

End-to-end alignment versus local alignment

- By default, Bowtie 2 performs end-to-end read alignment. That is, it searches for alignments involving all of the read characters. This is also called an "untrimmed" or "unclipped" alignment.
- When the --local option is specified, Bowtie 2 performs local read alignment. In this mode, Bowtie 2 might "trim" or "clip" some read characters from one or both ends of the alignment if doing so maximizes the alignment score.

BOWTIE2

End-to-end alignment example

• The following is an "end-to-end" alignment because it involves all the characters in the read. Such an alignment can be produced by Bowtie 2 in either end-to-end mode or in local mode.

Read: GACTGGGCGATCTCGACTTCG

Reference: GACTGCGATCTCGACATCG

Alignment:

Read:

Reference:

BOWTIE2

Local alignment example

• The following is a "local" alignment because some of the characters at the ends of the read do not participate. In this case, 4 characters are omitted (or "soft trimmed" or "soft clipped") from the beginning and 3 characters are omitted from the end. This sort of alignment can be produced by Bowtie 2 only in local mode.

Read: ACGGTTGCGTTAATCCGCCACG

Reference: TAACTTGCGTTAAATCCGCCTGG

Alignment:

Read:

Reference:

Scores: higher = more similar

 An alignment score quantifies how similar the read sequence is to the reference sequence aligned to. The higher the score, the more similar they are.

RUNNING BOWTIE2

\$ module spider bowtie

Description: Bowtie...

...

Versions: bowtie2/2.1.0 bowtie2/2.2.9

\$ module spider bowtie2/2.2.9

```
bowtie2: bowtie2/2.2.9
...
You will need to load all module(s) on any one of the lines below before
the "bowtie2/2.2.9" module is available to load.
    gcc/7.1.0
    gcc/9.2.0
```

More information

Homepage: http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Research Computing

RUNNING BOWTIE2

\$ module spider gcc/9.2.0 bowtie2/2.2.9

ml Currently Loaded Modules:

1) gcc/9.2.0 2) bowtie2/2.2.9

\$ ls -1 \$EBROOTBOWTIE2

bin doc easybuild example scripts

\$ ls -1 \$EBROOTBOWTIE2/bin

```
Bowtie2
bowtie2-align-1
bowtie2-align-s
bowtie2-build
bowtie2-build-1
bowtie2-build-s
bowtie2-inspect
bowtie2-inspect-1
bowtie2-inspect-s
LICENSE
MANUALMANUAL.markdown
NEWS
```


RUNNING BOWTIE2

\$ bowtie2 -h

Bowtie 2 version 2.2.9 by Ben Langmead (langmea@cs.jhu.edu, www.cs.jhu.edu/~langmea) Usage:

bowtie2 [options] * -x <bt2-idx> {-1 <m1> -2 <m2> | -U <r>} [-S <sam>]

-x	<bt2-idx></bt2-idx>	Index filename prefix (minus trailing .X.bt2).	
		NOTE: Bowtie 1 and Bowtie 2 indexes are not compatible.	
-1	<m1></m1>	Files with #1 mates, paired with files in <m2>.</m2>	
		Could be gzip'ed (extension: .gz) or bzip2'ed (extension:	.bz2).
-2	<m2></m2>	Files with #2 mates, paired with files in <ml>.</ml>	
		Could be gzip'ed (extension: .gz) or bzip2'ed (extension:	.bz2).
-U	<r></r>	Files with unpaired reads.	
		Could be gzip'ed (extension: .gz) or bzip2'ed (extension:	.bz2).
-S	<sam></sam>	File for SAM output (default: stdout)	

<ml>, <m2>, <r> can be comma-separated lists (no whitespace) and can be specified many times. E.g. '-U file1.fq,file2.fq -U file3.fq'. Options (defaults in parentheses): Input: -q query input files are FASTQ .fq/.fastq (default) --qseq query input files are in Illumina's qseq format Performance: -p/--threads <int> number of alignment threads to launch (1)

BOWTIE2 - RESULTS

```
Building a SMALL index
10000 reads; of these:
Concordant alignment
  10000 (100.00%) were paired; of these:
    834 (8.34%) aligned concordantly 0 times
    9166 (91.66%) aligned concordantly exactly 1 time
    0 (0.00%) aligned concordantly >1 times
Discordant alignment
    834 pairs aligned concordantly 0 times; of these:
      42 (5.04%) aligned discordantly 1 time
The rest of the reads either align as singles
    792 pairs aligned 0 times concordantly or discordantly; of these:
      1584 mates make up the pairs; of these:
        1005 (63.45%) aligned 0 times
        579 (36.55%) aligned exactly 1 time
        0 (0.00\%) aligned >1 times
```

94.97% overall alignment rate

BOWTIE2 - RESULTS

Result summary are divided in 3 sections:

- Concordant alignment In your data (9166 + 0) reads align concordantly. Which is 91.66% of reads
- Discordant alignment So now 834 reads remain which is 8.34% (100-91.66%). Of these, 792 reads align discordantly. That is to say, of the non-concordant fraction, 5.04% of reads (42 reads) align discordantly.
- The rest Now, remember that alignment whether concord. or discord., but both are aligned in paired-end mode. The rest of the reads either align as singles (i.e. Read1 in one locus & Read2 in completely different locus or one mate aligned and the other unaligned) or may not align at all. So the reads that are in this section is Total (Concord.+Discord.). 10000 -(9166+42) = 792
- Now to reach the overall alignment, count the mates in total (i.e. mates aligned in paired and mates aligned in single fashion). That would be: (9166 x2)+(42 x2)+579 = 18995 mates. That is 18995 mates aligned of total (10000 x2) mates, which is 94.97%.

BOWTIE2 - RESULTS

Output .sam

- @HD VN:1.0SO:unsorted @SQ SN:gi|9626243|ref|NC_001416.1| LN:48502 @PG ID:bowtie2 PN:bowtie2 VN:2.2.9 CL:"/apps/software/standard/compiler/gcc/9.2.0/bowtie2/2.2.9/bin/... r5 99 gi|9626243|ref|NC_001416.1| 48010 42 138M = 48180 231 GTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGCCCTCGTAATTAAGTGAATTT... r5 147gi|9626243|ref|NC_001416.1| 48180 42 61M = 48010 -231 TGACCCAGGCTGACAAATTCCNGGACCCTTTTTGCTCCAGAGCGATGTTAATTTGTTCAAT...
- r4 99 gi|9626243|ref|NC_001416.1| 40075 42 184M = 40211 184 GGGCCAATGCGCTTACTGATGCGGAATTACGCCGTAAGGCCGCAGATGAGCTTGTCCATAT...

The first few lines (beginning with @) are SAM header lines, and the rest of the lines are SAM alignments, one line per read or mate. See the <u>Bowtie 2 manual section on</u> <u>SAM output</u> and the <u>SAM specification</u> for details about how to interpret the SAM file format.

RUNNING SAMTOOLS - FOR SAM/BAM FILES

- \$ module spider samtools
- \$ module load samtools/1.10
- \$ module show samtools/1.10
- \$ ls -l \$EBROOTSAMTOOLS/bin
- \$ samtools --help
- \$ samtools view --help

view SAM<->BAM<->CRAM conversion

- \$ samtools view -bS align2.sam > align2.bam
- \$ samtools sort align2.bam -o align2.sorted.bam

What are the options

- -b
- -S

RUNNING QUALIMAP

- \$ module spider qualimap
- \$ module load qualimap/2.2.1
 - Files are located in \$EBROOTQUALIMAP
- \$ ls -1 \$EBROOTQUALIMAP
- \$ qualimap -h
 - Available tools:

bamqc	Evaluate NGS mapping to a reference genome
rnaseq	Evaluate RNA-seq alignment data
counts	Counts data analysis (further RNA-seq data evaluation)
multi-bamqc	Compare QC reports from multiple NGS mappings
clustering	Cluster epigenomic signals
comp-counts	Compute feature counts

- \$ qualimap bamqc -bam align2.sorted.bam Number of reads: 20000 Number of valid reads: 18995 Number of correct strand reads:0
- Output: align2.sorted_stats

RNA-SEQ – DATA ANALYSIS

FastQC: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Trimmomatic: <u>http://www.usadellab.org/cms/?page=trimmomatic</u>

Bowtie2: http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#introduction

Samtools: <u>http://www.htslib.org/doc/samtools-merge.html</u>

Qualimap: http://qualimap.conesalab.org/

STAR: https://github.com/alexdobin/STAR

HISAT: http://www.ccb.jhu.edu/software/hisat/index.shtml

StringTie: <u>https://ccb.jhu.edu/software/stringtie/</u>

Trinity: <u>https://github.com/trinityrnaseq/trinityrnaseq/wiki</u>

RSEM: https://deweylab.github.io/RSEM/

Salmon: <u>https://salmon.readthedocs.io/en/latest/salmon.html</u>

DESeq2: https://bioconductor.org/packages/release/bioc/html/DESeq2.html

edgeR: https://bioconductor.org/packages/release/bioc/html/edgeR.html

