
SHARED MEMORY AND
ACCELERATOR

PROGRAMMING

SHARED MEMORY
PROGRAMMING

SHARED-MEMORY
PROCESSORS

• General system memory is shared by all the cores
on a computer/node.

• Programming model is subprocesses, known as
threads.

• Master process starts and controls subprocesses.

• Threads are created/destroyed as needed

• Each thread has a set of private variables. Other
variables are shared by all threads.

SHARED-MEMORY MODEL

4

Processor Processor Processor Processor

Memory

Processors interact and synchronize with each

other through shared variables.

TYPES OF PARALLELISM

• Embarrassingly parallel (high-throughput
computing)

• Independent processes with little (or no) need to
communicate.

• Data parallelism

• Divide the data into smaller parts. Work on each part
individually, then if necessary collect results and go to
next phase.

• Task parallelism

• Perform multiple tasks at the same time on the data.

DATA PARALLELISM

• Independent tasks apply same operation to
different elements of a data set.

• Usually expressed as a loop.

for (i=0;i<imax;i++) {

a[i]=b[i]+c[i]

}

• Must be safe to perform operations concurrently

6

REAL-LIFE EXAMPLE
BRICKLAYING

• Step 1. Materials are delivered.

• Step 2. The foreman assigns the work.

• Step 3. Each mason lays brick in his assigned
section.

• Overlap of regions done by different masons must be
managed.

• Step 4. Smooth joints between sections to make
a unified whole.

COMPUTATIONAL EXAMPLE:
FINDING THE MAXIMUM

• Find the maximum of a function using a "brute force"
method.

• Evaluate the function at a huge number of randomly-
distributed points over a specified range of
independent variables.

• Distribute these points out so that each process
evaluates the function throughout the range.

• Each process computes the maximum of its sample.

• Individual maxima are returned to the master
process, which selects the maximum of maxima as
the result.

8

OPENMP

OPENMP

• OpenMP: An application programming interface
(API) for parallel programming on multiprocessors

• Compiler directives

• Library of support functions

• OpenMP works in conjunction with Fortran, C, or
C++

• Implemented within the compiler. Must be
activated by a compile-time option.

• Python can use OpenMP via C or Fortran and
wrap the result.

10

OPENMP

11

OPENMP USE CASES

• C/C++/Fortran + OpenMP sufficient to program
shared-memory computers.

• C/C++/Fortran + MPI + OpenMP a good way to
program distributed computers built out of
shared-memory nodes.

• Most modern clusters including Rivanna are of this
type.

• OpenMP is easiest to use with data-parallel
applications.

FORK/JOIN PARALLELISM

• Initially only master thread is active

• Master thread executes sequential code

• Fork: Master thread creates or awakens
additional threads to execute parallel code

• Join: At end of parallel code created threads die
or are suspended

13

HOW OPENMP WORKS

14

PRAGMAS AND
PSEUDOCOMMENTS

• Pragma: a compiler directive in C or C++

• Stands for “pragmatic information”

• A way for the programmer to communicate with the
compiler

• The compiler is free to ignore pragmas

• Syntax:

#pragma omp <rest of pragma>

• Pseudocomment: a pragma that otherwise looks like
a comment

!$omp <rest of pseudocomment>

15

COMPILING OPENMP
PROGRAMS

• OpenMP is a compiler-level library.

• Gnu Compiler Collection
• module load gcc

• gcc/g++/gfortran

• Use the –fopenmp flag when compiling.

• Intel’s compilers
• module load intel

• the compilers are icc/icpc/ifort

• Use the -qopenmp flag to compile

• Without the flag the pragmas/pseudocomments are
ignored (but any OMP headers used won’t be found).

16

RUNNING OPENMP PROGRAMS

• The default number of threads is implementation-
dependent, but usually is the number of cores it sees on a
node.

• The most common way to set the number of subprograms
is to use an environment variable OMP_NUM_THREADS

• Example
gcc -fopenmp myopm.c

• or

gfortran -fopenmp myomp.f90

• Run with
./a.out

export OMP_NUM_THREADS=4

./a.out

EXERCISE

• Using your choice of compiler, compile and run
• omphello.c

• or

• omphello.f90

• Try setting different values for
OMP_NUM_THREADS

PARALLEL FOR LOOPS

• C programs often express data-parallel operations as
for loops. Fortran equivalent is do.

for (i = first; i < size; i += prime)

marked[i] = 1;

• OpenMP makes it easy to indicate when the iterations
of a loop may execute in parallel

• Compiler takes care of generating code that
forks/joins threads and allocates the iterations to
threads

19

C/C++: PARALLEL FOR
PRAGMA

• Format:

#pragma omp parallel for

for (i = 0; i < N; i++)

a[i] = b[i] + c[i];

• Valid through the immediately following code block

• Compiler must be able to verify the run-time system
will have information it needs to schedule loop
iterations

20

FORTRAN: PARALLEL DO
PSEUDOCOMMENT

• Format:

!$omp parallel do

do i=1, N

a(i) = b(i) + c(i)

enddo

!$omp end parallel do

21

FORTRAN ONLY: WORKSHARE

• OpenMP provides the WORKSHARE option to
support array operations in Fortran.

!$omp PARALLEL WORKSHARE

A=1.

B=42.

C=2.*B

A=B*C+D

!$omp END PARALLEL WORKSHARE

WARNING!!!

• You’re telling the compiler something that had
better be true or else there will be lots of
problems

• You’re telling the compiler there are no inter-
iteration loop dependencies

• i.e, the loop iterations are completely independent

• There cannot be statements that end the loop
prematurely

• No break, return, exit, or goto

• But can have continues

23

SHARED AND PRIVATE
VARIABLES

• Shared variable: has same address in execution context
of every thread

• Private variable: has different address in execution
context of every thread
• A thread cannot access the private variables of another thread

• Default:
• Shared:

• C/C++: all static, all in whole-file scope

• Fortran: COMMON, SAVE, variables in modules

• Private:
• (First) loop variables

• Stack variables in functions (C/C++) or subroutines (Fortran) invoked in
a parallel region

• Fortran: Automatic variables within a statement block

24

DECLARING PRIVATE
VARIABLES
for (i = 0; i < N; i++)

for (j = 0; j <N; j++)

a[i][j] = myMIN(a[i][j])+myMEAN(a[i][j];

• Either loop could be executed in parallel

• We prefer to make outer loops parallel, to reduce
number of forks/joins

• We then must give each thread its own private
copy of variable j

25

PRIVATE CLAUSE

• Clause: an optional, additional component to a
pragma

• Private clause: directs compiler to make one or
more variables private

• Same syntax for C/C++ and Fortran

private (<variable list>)

26

EXAMPLE USE OF PRIVATE
CLAUSE
C/C++

#pragma omp parallel for private(j)

for (i = 0; i <N; i++)

for (j = 0; j < N; j++)

a[i][j] = myMIN(a[i][j)+myMEAN(a[i][j]);

Fortran

!$omp parallel do private(i)

do j=1,N

do i=1,N

a(i,j)=min(a(i,j),a(i,j)+tmp)

enddo

enddo

!$omp end parallel do

27

RACE CONDITIONS

• Consider this C program segment to compute 
using the rectangle rule:

28

double area, pi, x;

int i, n;

...

area = 0.0;

for (i = 0; i < n; i++) {

x = (i+0.5)/n;

area += 4.0/(1.0 + x*x);

}

pi = area / n;

RACE CONDITION (CONT.)

• If we simply parallelize the loop...

29

double area, pi, x;

int i, n;

...

area = 0.0;

#pragma omp parallel for private(x)

for (i = 0; i < n; i++) {

x = (i+0.5)/n;

area += 4.0/(1.0 + x*x);

}

pi = area / n;

RACE CONDITION (CONT.)

• ... we set up a race condition in which one
process may “race ahead” of another and not see
its change to shared variable area

30

11.667area

area += 4.0/(1.0 + x*x)

Thread A Thread B

15.432

11.66711.66715.432 15.230

15.230

Answer should be 18.995

RACE CONDITION TIME LINE

31

Thread A Thread BValue of area

11.667

+ 3.765

+ 3.563

11.667

15.432

15.230

CRITICAL PRAGMA

• Critical section: a portion of code that only one
thread at a time may execute

• We denote a critical section by putting the
pragma

#pragma omp critical

in front of a block of C code.

For Fortran the equivalent is

!$omp critical

!$end omp critical

32

CORRECT, BUT INEFFICIENT,
CODE

33

double area, pi, x;

int i, n;

...

area = 0.0;

#pragma omp parallel for private(x)

for (i = 0; i < n; i++) {

x = (i+0.5)/n;

#pragma omp critical

area += 4.0/(1.0 + x*x);

}

pi = area / n;

SOURCE OF INEFFICIENCY

• Update to area inside a critical section

• Only one thread at a time may execute the
statement; i.e., it is sequential code

• Time to execute statement significant part of loop

• Speedup will be severely constrained by this
serialization

34

REDUCTIONS

• This pattern is called a reduction. Reductions are
so common that OpenMP provides support for
them.

• May add reduction clause to parallel for

pragma.

• Specify reduction operation and reduction
variable.

• OpenMP takes care of storing partial results in
private variables and combining partial results
after the loop.

35

REDUCTION CLAUSE

• The reduction clause has this syntax:
reduction (<op> :<variable>)

• Operators
+ Sum
* Product
& Bitwise and
| Bitwise or
^ Bitwise exclusive or
&& Logical and
|| Logical or

• Fortran, and C/C++ for OpenMP 3.1 or greater
max

min

36

-COMPUTING CODE WITH REDUCTION
CLAUSE

37

double area, pi, x;

int i, n;

...

area = 0.0;

//pragma should be all on one line

#pragma omp parallel for

private(x) reduction(+:area)

for (i = 0; i < n; i++) {

x = (i + 0.5)/n;

area += 4.0/(1.0 + x*x);

}

pi = area / n;

PARALLEL PRAGMA

• The parallel pragma launches a team of

threads.

• Execution is replicated among all threads.

• More general than parallel for or parallel do.
Permits break/exit in a loop.

38

FOR PRAGMA

• The parallel for pragma will fork the threads,
and split the for loop into parts

• The parallel pragma will fork the threads, and
execute the same for loop for each thread (i.e. not
split any loops into parts)

• But if you have already split the threads (via a
parallel pragma), and want to split a for loop
among the already existing threads (as opposed to
executing the entire loop in all threads), then use a
for pragma:

#pragma omp for

!$omp do .. !$omp end do
39

EXAMPLE USE OF FOR PRAGMA

40

#pragma omp parallel private(i,j)

for (i = 0; i < m; i++) {

low = a[i];

high = b[i];

if (low > high) {

printf ("Exiting (%d)\n", i);

break;

}

#pragma omp for

for (j = low; j < high; j++)

c[j] = (c[j] - a[i])/b[i];

}

BARRIER PRAGMA

• When a thread encounters a barrier pragma it will
wait till all threads have reached the barrier.
• #pragma omp barrier

• $!omp barrier

• This enables the threads to synchronize but does
tend to serialize the code.

MASTER AND SINGLE
PRAGMAS
• Suppose we only want to see the output once

• The single pragma directs compiler that only a single thread
should execute the block of code the pragma precedes

• Syntax:

#pragma omp single {}

!$omp single

!$omp end single

• With single the first thread who reaches it executes the
segment. The master pragma causes only the master
thread to execute the section.

#pragma omp master {}

!$omp master

!$omp end master

42

USE OF MASTER PRAGMA

43

#pragma omp parallel private(i,j)

for (i = 0; i < m; i++) {

low = a[i];

high = b[i];

if (low > high) {

#pragma omp master

printf ("Exiting (%d)\n", i);

break;

}

#pragma omp for

for (j = low; j < high; j++)

c[j] = (c[j] - a[i])/b[i];

}

ATOMIC OPERATIONS

• What if we can’t use a reduction but need to
update a variable without a race condition?

• The atomic directive ensures that a variable is
accessed by one thread at a time.

#pragma omp atomic

count+=1

!omp atomic

Count=count+1

• The Fortran version does not need an end
because atomic applies to only one statement.

USEFUL FUNCTIONS

• C/C++: #include <omp.h>

• Fortran: use omp_lib

• omp_get_num_threads()
• This function returns the number of active threads
• Returns 1 in serial regions

int omp_get_num_threads (void)

integer function omp_get_num_threads()

• omp_get_thread_num()
• This function returns the thread identification number
• If there are t threads, the ID numbers range from 0 to t-1
• The master thread has ID number 0

int omp_get_thread_num (void)

integer function omp_get_thread_num()

45

TIMING FUNCTION

• C/C++

double t1, etime;

t1=omp_get_wtime();

compute

etime=omp_get_wtime()-t1;

• Fortran

double precision :: t1, etime

t1=omp_get_wtime()

compute

etime=omp_get_wtime()-t1

OPENMP SLURM RESOURCE
REQUEST

• You will request a single node and some number of
cores on the node. Be sure that the number of cores
requested matches the OMP_NUM_THREADS
specified in your script.
#!/bin/bash

#SBATCH --nodes=1

#SBATCH --cpus-per-task=20

#SBATCH –p instructional

#SBATCH –A rivanna-training

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

./myexec

47

EXERCISE

• Fortran and C/C++:

• Download omparea.c or omparea.f90

• Compile and run them as is

• Add the correction to get the right answer

• Python:

• Download and run multi.py

SHARED MEMORY
PROGRAMMING IN

PYTHON

THE GIL

• Standard Python implements a GIL (global
interpreter lock).

• Threads cannot be started within a single
interpreter.

• It can be faked but it’s slow.

• Better: Just start another process.

• Multiprocessing is standard in Python 2.7 and up.

• Next few examples are from the documentation at

http://docs.python.org/2/library/multiprocessing.h
tml

http://docs.python.org/2/library/multiprocessing.html

MULTIPROCESSING

• Import the package

from multiprocessing import Process

• Define a function

def f(name):

print('hello from '+name)

• Multiprocessing can only run as main

if __name__ == '__main__':

ncpus=2

for i in range(ncpus):

p=Process(target=f,args=('str(i)',))

p.start()

p.join()

WORKER POOLS

• For manager-worker problems, we can start a pool of
workers.

from multiprocessing import Pool

def f(x):

return x*x

if __name__ == '__main__':

pool = Pool(processes=4)

result = pool.apply_async(f, [10])

print(result.get(timeout=1))

print(pool.map(f, range(10)))

EXAMPLE
import multiprocessing as MP

import os

from pylab import *

import random

This is the function that we want to

compute for various different parameters

def spikes(weight):

number=weight*random.random()

return number

if __name__ == '__main__':

ncpus=int(os.getenv("NUM_THREADS"))

pool = MP.Pool(processes=ncpus)

weights = linspace(0, 3.5, 100)

volt=0.2

args = [w * volt for w in weights]

launches multiple processes

results = pool.map(spikes, args)

plot(weights, results, '.')

show()

MORE REALISTIC EXAMPLE

• From http://kmdouglass.github.io/posts/learning-
pythons-multiprocessing-module.html

import multiprocessing

def runSimulation(params):

"""This is the main processing function. It will contain

whatever code should be run on multiple processors. """

param1, param2 = params

Example computation

processedData = []

for ctr in range(1000000):

processedData.append(param1*ctr - param2**2)

return processedData

http://kmdouglass.github.io/posts/learning-pythons-multiprocessing-module.html

REALISTIC EXAMPLE (CONT)

if __name__ == '__main__':

ncpus=4

Define the parameters to test

param1 = range(100)

param2 = range(2, 202, 2)

Zip the parameters because pool.map() takes

only one iterable

params = zip(param1, param2)

pool = multiprocessing.Pool(processes=npcus)

results = pool.map(runSimulation, params)

print(results)

ADD TIMING INFORMATION

#add import time to top of file, use time.time() rather than clock

#Run under Python 2 for consistency of map behavior

from __future__ import print_function

if __name__ == '__main__':

ncpus=4

Define the parameters to test

param1 = range(100)

param2 = range(2, 202, 2)

Zip the parameters because pool.map() takes only one iterable

params = zip(param1, param2)

pool = multiprocessing.Pool(processes=ncpus)

tic=time.time ()

results = pool.map(runSimulation, params)

toc=time.time ()

print("Parallel time "+str(toc-tic))

tic=time.time ()

results=map(runSimulation, params)

toc=time.time ()

print("Serial time "+str(toc-tic))

pool.close(); pool.join()

RESULT

• On my workstation with Python 2.7.11 this results
in

Parallel time 9.66964006424

Serial time 25.3560800552

• This is a speedup of a factor of 2.6

• The efficiency is thus 0.66

WARNING

• If no processes argument is given to Pool it starts
as many processes as it detects cores on your
machine.

• If using a shared resource this can be bad. You
must tell it how many to use and it must match
your request.

• We can use os.getenv('Envvar') to get

the value of an environment variable, if we have
an appropriate variable.

PYTHON MP SLURM RESOURCE
REQUEST

• You will request a single node and some number of
cores on the node. You will need to set some
environment variable, then use os.getenv() in your
code to capture it.
#!/bin/bash

#SBATCH --nodes=1

#SBATCH --cpus-per-task=20

#SBATCH –p instructional

#SBATCH –A rivanna-training

export NUM_THREADS=${SLURM_CPUS_PER_TASK}

module load mpi4py/3.0.0-py3.6

python mymulti.py

59

IN THE CODE

import os

import multiprocessing

…

def f(name):

print("Greetings from "+str(name))

ncpus=int(os.getenv('NUM_THREADS'))

pool=multiprocessing.Pool(processes=ncpus)

pool.map(f,range(ncpus))

pool.close()

pool.join()

SAMPLE RESULT

Greetings from 0

Greetings from 1

Greetings from 3

Greetings from 2

• Why are they not in order??
• Multiprocessing is not deterministic! The output

depends on in which order the processes complete
and can access the standard output.

• The map method of Pool does force determism
for the return values. So if we change it a bit:

KEEP IT ORDERED
import os

from multiprocessing import Pool

def f(name):

return "Greetings from "+str(name)

ncpus=int(os.getenv('SLURM_NTASKS'))

pool=Pool(processes=ncpus)

result=pool.map(f,range(ncpus))

print(';'.join(result))

pool.close()

pool.join()

• Output:

Greetings from 0;Greetings from 1;Greetings from 2;Greetings from 3

EXERCISE

• Write a multiprocessing program that computes
the sum of the cubes of the numbers from 1.0 to
1000.0 by increments of 0.1

• Add the timing routines to compare the parallel
and serial times. You can use the cluster frontend
if you do not have a Python 2 or 3 environment,
with

module load anaconda/5.2.0-py2.7

• or

module load anaconda/5.2.0-py3.6

PROGRAMMING NEW
HARDWARE

ACCELERATORS

• Accelerators include

• General-purpose GPUs (GPGPUs)

• Intel MIC

• These are programmed with OpenACC (GPGPUs)
or OpenMP (MIC, GPGPU extensions to OpenMP
are in newer versions).

GENERAL PURPOSE
GRAPHICAL
PROCESSING UNITS

GPGPU ARCHITECTURE

• GPUs have

• thousands of ALUs (Arithmetic Logic Units) compared
to 4-8 for a CPU

• very limited instruction sets

• very fast memory bandwidth

• but not that much memory

• Most GPGPUs do not have hardware for double
precision floats.

• K80 does, P100 does not

PROGRAMMING MODELS

• CUDA
• CUDA is a library from NVIDIA that allows general-purpose

computations on devices originally designed for graphics

• OpenMP
• OpenMP will support both NVIDIA and AMD GPGPUs but

compiler support is still lagging

• OpenACC
• Developed by the Portland Group compiler vendors for

NVIDIA devices.
• Bought by NVIDIA, will soon become the “NVIDIA HPC SDK”.

• Similar to OpenMP (pragma/pseudocomment based)

• Will be our example

PROGRAMMING MODEL

GPGPU

acc parallel

acc end parallel

Copy data to GPU

Perform computation

Copy output to CPU

Free GPU memory

OPENACC

• OpenACC is available in Portland Group compilers
and in Gnu compilers starting with 5.0

• Supports C/C++/Fortran

• Pragmas similar to OpenMP

• #pragma acc

• !$acc

• PGI also supports CUDA and provides Fortran
bindings for it.

PARALLEL REGIONS

• Pragmas are the same as for OpenMP with acc instead of omp

• These include

• #pragma acc parallel

• #pragma acc parallel if (<conditional>)

• #pragma acc parallel private (varlist)

• OpenACC uses a generic loop rather than for/do

• #pragma acc parallel

• #pragma acc loop

• Or

• !$acc parallel

• !$acc loop

• !$acc end parallel

REDUCTIONS

• #pragma acc parallel reduction(operator:list)

• Provides a max and min for C/C++ as well as Fortran

• C operators are max, min, +, *, &, |, &&, ||, ^

• Fortran operators are max, min, +, *, iand, ior, .and.,
.or., .eqv., .neqv.

EXAMPLE - SAXPY

• single precision a times x plus y

• a scalar, x and y one-dimensional arrays

• array version of "fused multiply add" and should
be fast for good performance of many algorithms.

SERIAL VERSION

Fortran
subroutine saxpy(n, a, x, y)

real, dimension(n), intent(in)::x,y

real , intent(in) :: a

integer, intent (in) :: n

integer :: i

do i=1,n

y(i) = a*x(i)+y(i)

enddo

end subroutine saxpy

...

! Perform SAXPY on 1M elements

call saxpy(2**20, x_d, y_d)

C
void saxpy(int n, float a,

float *x, float *restrict y){

//restrict prohibits aliasing

for (int i=0;i<n;++i)

y[i]=a*x[i]+y[i];

}

...

//Perform SAXPY on 1M

//elements

saxpy(1<<20,2.0,x,y);

OPENMP VERSION

Fortran
subroutine saxpy(n, a, x, y)

real, dimension(n), intent(in)::x,y

real , intent(in) :: a

integer, intent (in) :: n

integer :: I

!$omp parallel do

do i=1,n

y(i) = a*x(i)+y(i)

enddo

!$end omp parallel do

end subroutine saxpy

...

! Perform SAXPY on 1M elements

call saxpy(2**20, x_d, y_d)

C
void saxpy(int n, float a,

float *x, float *restrict y){

#pragma omp parallel for

for (int i=0;i<n;++i)

y[i]=a*x[i]+y[i];

}

...

//Perform SAXPY on 1M

//elements

saxpy(1<<20,2.0,x,y);

OPENACC VERSION

Fortran
subroutine saxpy(n, a, x, y)

real, dimension(n), intent(in)::x,y

real , intent(in) :: a

integer, intent (in) :: n

integer :: I

!$acc parallel loop

do i=1,n

y(i) = a*x(i)+y(i)

enddo

!$end acc parallel loop

end subroutine saxpy

...

! Perform SAXPY on 1M elements

call saxpy(2**20, x_d, y_d)

C
void saxpy(int n, float a,

float *x, float *restrict y){

#pragma acc parallel loop

for (int i=0;i<n;++i)

y[i]=a*x[i]+y[i];

}

...

//Perform SAXPY on 1M

//elements

saxpy(1<<20,2.0,x,y);

COMPILING

• With the PGI compiler

module load pgi

pgcc -acc mysaxpy.c

pgf90 -acc mysaxpy.f90

pgCC -acc mysaxpy.cxx

SPECIAL CONSIDERATIONS FOR
GPGPUS

• GPGPUs have a small amount of memory with
very high bandwidth

• Management of data movement to/from the
device is critical for performance

• These pragmas do not have (basic) OpenMP
equivalents.

KERNELS AND DATA

• Kernels are implemented on the device

• #pragma acc kernels

• !$acc kernels

• !$acc end kernels

• Data constructs are regions where data is
accessible to the device

• #pragma acc data

• !$acc data

• !$acc end data

KERNELS

• With the keyword kernel the compiler determines what can be
offloaded to the gpu

!$acc kernels

do i=1,n

a(i) = 0.0

b(i) = 1.0

c(i) = 2.0

end do

do i=1,n

a(i) = b(i)+c(i)

enddo

!$acc end kernels

DATA MOVEMENT

• Enter data
• Data are allocated on and moved to the device
• #pragma acc enter data
• !$acc enter data

• Exit data
• The data will stay on the device to the end of the program

or to the next exit data pragma
• #pragma acc exit data
• !$acc exit data

• Update data
• Copies data between memory for the thread and the device
• #pragma acc update
• !$acc update

EXCESSIVE COPIES SLOW
DOWN CODE

• Example:

while (error>tol && i<maxIter) {

#pragma acc parallel loop reduction(max:err)

Data transfer into GPU

for (something) {do things with A, Anew}

Data transfer out of GPU

}

• Data Regions
• !$acc data

• !$acc end data

• #pragma acc data

DATA DIRECTIVES

• copy (list)
• copy items in the list to the GPU on entry; to host on exit

• copyin (list)
• copy items in list to the GPU

• copyout (list)
• copy items in list from the GPU

• create (list)
• allocate GPU memory but do not copy (good for temporary

variables not needed outside)

• present (list)
• assert that items in list are already present in the GPU's

memory

IMPROVING THE DOUBLE LOOP

#pragma acc data copy(A), create(Anew)

while (error>tol && i<maxIter) {

#pragma acc parallel loop reduction(max:err)

for (something) {do things with A, Anew}

}

PYTHON AND GPGPUS

• Numba
• from numba import cuda

• We use the cuda.jit decorator

• Check for a gpu
• print(cuda.gpus())

• https://numba.pydata.org/numba-
doc/latest/cuda/overview.html

NUMBA EXAMPLE
• From their documentation

from numba import cuda, float32

Controls threads per block and shared memory usage.

The computation will be done on blocks of TPBxTPB elements.

TPB = 16

@cuda.jit

def fast_matmul(A, B, C):

Define an array in the shared memory

The size and type of the arrays must be known at compile time

sA = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

sB = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

x, y = cuda.grid(2)

tx = cuda.threadIdx.x

ty = cuda.threadIdx.y

bpg = cuda.gridDim.x # blocks per grid

if x >= C.shape[0] and y >= C.shape[1]:

Quit if (x, y) is outside of valid C boundary

return

Each thread computes one element in the result matrix.

The dot product is chunked into dot products of TPB-long

#vectors.

tmp = 0.

for i in range(bpg):

Preload data into shared memory

sA[tx, ty] = A[x, ty + i * TPB]

sB[tx, ty] = B[tx + i * TPB, y]

Wait until all threads finish preloading

cuda.syncthreads()

Computes partial product on the shared memory

for j in range(TPB):

tmp += sA[tx, j] * sB[j, ty]

Wait until all threads finish computing

cuda.syncthreads()

C[x, y] = tmp

PYCUDA
• This is a free product

• Requires the CUDA libraries, which must be installed by the user (or whoever administers the system)

• Example from their documentation

import pycuda.autoinit

import pycuda.driver as drv

import numpy

from pycuda.compiler import SourceModule

mod = SourceModule("""

__global__ void multiply_them(float *dest, float *a, float *b)

{

const int i = threadIdx.x;

dest[i] = a[i] * b[i];

}

""")

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn(400).astype(numpy.float32)

b = numpy.random.randn(400).astype(numpy.float32)

dest = numpy.zeros_like(a)

multiply_them(

drv.Out(dest), drv.In(a), drv.In(b),

block=(400,1,1), grid=(1,1))

print dest-a*b

