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BROADCAST

• Write a program that generates an array of values 
from 1 to 10 only on the root process

• Broadcast the array to each process.  

• Have each process print the array.

• Test it with four processes on the frontend



REDUCTION

• Write a program that generates an array of 
mpi_rank to mpi_rank +10 on each process.

• Have each process sum its array (Fortran and 
Python programmers may use the sum intrinsic).

• Perform a reduction to get the overall sum.

• Print the grand sum on all processes.  What do 
you see?

• Have only the master print the grand sum.

• Try replacing Reduce with Allreduce and have all 
the processes print the grand sum.



GATHER

• Modify your program that creates the arrays 
mpi_rank to mpi_rank+10 so that they are 
gathered into the root process.

• Convert gather to allgather.



PERFORMANCE 
ANALYSIS



SPEEDUP FORMULA
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timeexecution  Parallel

timeexecution  Sequential
  Speedup 



EXECUTION TIME COMPONENTS

• For a problem of size n on p processors

• Inherently sequential computations:  (n)

• Potentially parallel computations: (n)

• Communication operations: (n,p)

• The letters are, respectively, sigma, phi, and kappa

• Single processor is (n) + (n)

• No (n,p)

• p processors is (n) + (n)/p + (n,p)

• This is the ideal
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SPEEDUP EXPRESSION

• Speedups may be less than ideal due to 
operating system jitter, network noise, etc.  

• Occasionally speedup may be better than 
expected due to cache effects (smaller arrays are 
more cache efficient)
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y (n, p) =
s (n)+f(n)

s (n)+f(n) / p+k (n, p)



(N)/P: COMPUTATION TIME
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(N,P): COMMUNICATION TIME
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(N)/P + (N,P): TOTAL TIME 
TAKEN
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EFFICIENCY
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timeexecution  Parallel  used Processors

timeexecution  Sequential
  Efficiency




e(n, p) =
s (n)+f(n)

p s (n)+f(n) / p+k (n, p)( )

e(n, p) =
s (n)+f(n)

ps (n)+f(n)+ pk (n, p)

(epsilon)

Or equivalently



0  (N,P)  1

14

),()()(

)()(
),(

pnpnnp

nn
pn











All terms > 0  (n,p) > 0

Denominator > numerator  (n,p) < 1



AMDAHL’S LAW
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y (n, p) =
s (n)+f(n)

s (n)+f(n) / p +k (n, p)

<
s (n)+f(n)

s (n)+f(n) / p

Let f = (n)/((n) + (n))
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f is the fraction of the part that 

must be done sequentially.  

0 ≤ f ≤ 1

Thus



EXAMPLE 1

• 95% of a program’s execution time occurs inside 
a loop that can be executed in parallel. What is 
the maximum speedup we should expect from a 
parallel version of the program executing on 8 
CPUs?  What is the efficiency?

• f = 0.05
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POP QUIZ

• An oceanographer gives you a serial program and 
asks you how much faster it might run on 8 
processors. 

• You can only find one function amenable to a 
parallel solution. 

• Benchmarking and profiling on a single processor 
reveals 80% of the execution time is spent inside 
this function. 

• What is the best speedup a parallel version is 
likely to achieve on 8 processors?
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POP QUIZ ANSWER

• 20% of a program’s execution time is spent within 
inherently sequential code. What is the maximum 
speedup we should expect from a parallel version 
of the program executing on 8 CPUs?  What is the 
efficiency?

• f = 0.2
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POP QUIZ EXTENDED ANSWER

• 20% of a program’s execution time is spent within 
inherently sequential code. What is the limit to 
the speedup achievable by a parallel version of 
the program?

• f = 0.2

• p->∞
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POP QUIZ

• A computer animation program generates a 
feature movie frame-by-frame. 

• Each frame can be generated independently and 
is output to its own file. 

• If it takes 99 seconds to render a frame and 1 
second to output it, how much speedup can be 
achieved by rendering the movie on 100 
processors?
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AMDAHL EFFECT

• As n (problem size) increases, (n)/p typically 
dominates (n,p) (communication time)

• In other words, as the problem size increases, the 
communication drops down as a percentage of time 
taken

• Thus as n increases, speedup increases
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ILLUSTRATION OF AMDAHL 
EFFECT
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n = 100

n = 1,000

n = 10,000
Speedup

Processors



SCALABILITY



STRONG SCALING VS. WEAK 
SCALING

• The Amdahl Effect suggests that more work per 
process is better.

• Strong scaling: same quantity of work divided 
among an increasing number of processes.

• Weak scaling: amount of work per process fixed, 
number of processes increased.



POINT-TO-POINT 
COMMUNICATIONS

• Individual processes send and receive messages 
from other processes.

• Send can be

• Synchronous or asynchronous

• Buffered or unbuffered

• Sent to a particular destination

• Receive can be

• Blocking or non-blocking

• Buffered or non-buffered

• Received from a particular source



MESSAGE COST

• One of the most important things to keep in mind

Tmsg= a + bBytes (an approximation)

26Message length

Time



A FEW WARNINGS

• The message cost is rarely linear; there are 
usually “jaggies” and other discontinuities

• The equation usually only holds on an idle 
network

• The message cost equation is really a function of 
the application topology, the network topology, 
and then number of processors!
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NETWORK TYPES

• High latency, low- to moderate-bandwidth:
• Ethernet

• 1GE 1 gigabit per second, may be a hub topology

• 10GE 10 gigabits per second, always switched

• Typical switch latency for 10GE is approximately 230 ns

• Low-latency, high bandwidth:
• Most popular (and surviving) is InfiniBand

• Different ratings are QDR (quad data rate) and FDR (fourteen 
data rate)

• Typical switch latency 100 ns for FDR

• Bandwidth approximately 56 Gb/sec for FDR

• Intel OmniPath is comparable



POINT-TO-POINT 
MESSAGES



FUNCTION MPI_SEND (C)

int MPI_Send (

void         *message,

int count,

MPI_Datatype datatype,

int dest,

int tag,

MPI_Comm comm

)
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FUNCTION MPI_SEND
(FORTRAN)

• MPI_SEND(buf, count, datatype, dest, 
tag, comm, ierr)

• integer count, datatype, dest, tag, 
comm, ierr

• <type> buf(<length>)

• Example:
• call 
MPI_SEND(myval,1,MPI_INTEGER,my_rank+1,0

, MPI_COMM_WORLD,ierr)
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FUNCTION MPI_SEND (PYTHON, 
MPI4PY)

• send (sendobjc, destination, tag)

• Note that the lower-case ‘send’ handles pickled objects; use the 
title-case ‘Send’ for NumPy arrays as in the example below.  

Default for both "destination" and "source" is 0 (root) (thus don't 
match if only defaults used).

• Example:
• MPI.COMM_WORLD.Send ([data,MPI.DOUBLE], rank+1, 0)

• data is an initialized numpy array

• When creating a numpy array, by default it creates it as a double.  It is 
advisable to provide an explicit dtype to be sure your types match.

• To send a scalar create a one-element NumPy array.

• The number of elements sent is based on the size of the ‘data’ 
array

• The error status is returned by the subroutine
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FUNCTION MPI_RECV (C)

int MPI_Recv (

void         *message,

int count,

MPI_Datatype datatype,

int source,

int tag,

MPI_Comm comm,

MPI_Status *status

)
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FUNCTION MPI_RECV
(FORTRAN)

• MPI_RECV(buf, count, datatype, 
source, tag, comm, status, ierr)

• integer count, datatype, source, tag, 
comm

• integer status(MPI_STATUS_SIZE)

• <type> buf(<length>)

• Example
• call MPI_RECV(myval, 1, MPI_INTEGER,
my_rank-1, 0, MPI_COMM_WORLD, 

status, ierr)
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FUNCTION MPI_RECV (PYTHON)

• Recv (recvobjc, destination, tag)

• Note that the lower-case ‘recv’ handles pickled objects; 
use the title-case ‘Recv’ for NumPy arrays

• Example:
• MPI.COMM_WORLD.Recv ([data,MPI.DOUBLE], rank-1, 

0)

• data is an initialized numpy array

• When creating a numpy array, by default it creates it as a double

• The error status is returned by the subroutine
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CODING SEND/RECEIVE

36

…

if (ID == j) {

…

Receive from i

…

}

…

if (ID == i) {

…

Send to j

…

}

…

Receive is before Send.

Why does this work?



EXAMPLE (C)

#include <mpi.h> 

#include <stdio.h> 

#include <stdlib.h> 

int main(int argc, char** argv) { 

// Initialize the MPI environment 

MPI_Init(NULL, NULL); 

// Find out rank, size 

int world_rank; 

MPI_Comm_rank(MPI_COMM_WORLD, &world_rank); 

int world_size; 

MPI_Comm_size(MPI_COMM_WORLD, &world_size); 

// We are assuming at least 2 processes for this task 

if (world_size < 2) { 

fprintf(stderr, "World size must be greater than 1 for %s\n", argv[0]);

MPI_Abort(MPI_COMM_WORLD, 1);

} 

int number; 

//Works because 1 will necessarily be in receive state while 0 goes into send state

if (world_rank == 0) { 



INSIDE MPI_SEND AND 
MPI_RECV
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Sending Process Receiving Process

Program

Memory

System

Buffer

System

Buffer

Program

Memory

MPI_Send MPI_Recv



RETURN FROM  MPI_SEND

• Function blocks until message buffer free

• Message buffer is free when

• Message copied to system buffer, or

• Message transmitted

• Typical scenario

• Message copied to system buffer

• Transmission overlaps computation
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RETURN FROM MPI_RECV

• Function blocks until message in buffer

• If message never arrives, function never returns
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DEADLOCK

• Deadlock: process waiting for a condition that will 
never become true

• Easy to write send/receive code that deadlocks

• Two processes: both receive before send

• Send tag doesn’t match receive tag

• Process sends message to wrong destination process

• Both send large messages to each other first, then 
receive. Too big for buffers.
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MPI4PY
import numpy as np

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank =comm.Get_rank()

#Note alternation in Send/Recv order

if comm.size==2:

if comm.rank == 0:

sendmsg = np.array([777],dtype=float)

comm.Send([sendmsg,MPI.DOUBLE], dest=1, tag=0)

rec=comm.recv(source=1, tag=1)

else:

rec=np.empty(1,dtype=float)

comm.Recv([rec,MPI.DOUBLE],source=0, tag=0)

sendmsg = "abc"

comm.send(sendmsg, dest=0, tag=1)

print rank, rec



POINT-TO-POINT 
EXERCISES



IJOB

• Use ijob for your experiments here

• ijob –A rivanna-training –p standard –c 8



SEND RECEIVE

• Write a program for 2 processes in which rank 0 
sends a message to rank 1 and receives a 
message back from rank 1.  

• Modify this code to a "ping pong" where the 
processes exchange messages some number of 
times.  Try it with 1 first, then try 10 exchanges.



SEND RECEIVE

• Write a program in which each process determines a 
unique partner to exchange messages.  One way to 
do this is to use

if rank < npes//2:

partner=npes//2 + rank

else

partner=rank-npes//2

• Each tasks sends its rank to its partner.  Each task 
receives the partner's rank.

• Print the message received when done.

• Check that your program works for 1 process.



SENDRECV

• Write a program in which all processes send a 
message to their left and receive from their right, 
except for the ends.

• Make the ends not send any message

• Make the messages circular, i.e. 0 receives from np-1 
and np-1 receives from 0 



APPLICATION EXAMPLE: 
PARTIAL DIFFERENTIAL 
EQUATIONS



NUMERICAL SOLUTION OF PARTIAL 
DIFFERENTIAL EQUATIONS

• We will examine point-to-point communications 
for the example of partial differential equations

• This is a very typical application for P2P 
messaging

• Definitions:

• Ordinary differential equation: equation containing 
derivatives of a function of one variable

• Partial differential equation: equation containing 
derivatives of a function of two or more variables



EXAMPLES OF PHENOMENA 
MODELED BY PDES

• Air flow over an aircraft wing

• Blood circulation in human body

• Water circulation in an ocean

• Bridge deformations as its carries traffic

• Evolution of a thunderstorm

• Oscillations of a skyscraper hit by earthquake

• Strength of a toy
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MODEL OF SEA SURFACE 
TEMPERATURE
IN ATLANTIC OCEAN
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Courtesy MICOM group

at the Rosenstiel School

of Marine and Atmospheric

Science, University of Miami



SOLVING PDES

• Finite element method

• Finite difference method (our focus)

• Converts PDE into matrix equation

• Result is usually a sparse matrix

• Matrix-based algorithms represent matrices explicitly

• Matrix-free algorithms represent matrix values 
implicitly (our focus)
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LINEAR SECOND-ORDER PDES

• Linear second-order PDEs are of the form

where A - H are functions of x and y only

• Elliptic PDEs: B2 - AC < 0

• Parabolic PDEs: B2 - AC = 0

• Hyperbolic PDEs: B2 - AC > 0
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DIFFERENCE QUOTIENTS
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f(x+h/2)

f(x-h/2)

f'(x)

x x+h/2x-h/2 x+hx-h



FORWARD-DIFFERENCE 
FORMULA FOR 1ST DERIVATIVE
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𝑓′(𝑥) ≈
𝑓 𝑥 + ∆𝑥 − 𝑓(𝑥)

∆𝑥



CENTERED-DIFFERENCE 
FORMULAS FOR 1ST, 2D 
DERIVATIVES
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HEAT DIFFUSION 
EQUATIONS



BOUNDARY VALUE PROBLEM
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Ice water Rod Insulation



ONE-DIMENSIONAL DIFFUSION 
EQUATION

• This equation can be represented by the PDE
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕2𝑥
+ 𝑓

• In this equation, a is the diffusion coefficient (we 
will assume it is constant) and f is the forcing 
function. 

• The forcing is often zero. 



FINITE-DIFFERENCE 
APPROXIMATION
I=SPACE INDEX, N=TIME INDEX

𝑥𝑖=i∆𝑥 , 𝑡𝑛 = n∆𝑡

𝑢𝑖
𝑛+1

𝑢𝑖−1
𝑛+1 𝑢𝑖

𝑛 𝑢𝑖+1
𝑛

x

x x x

time

space



FINITE DIFFERENCE FORWARD 
EULER METHOD

• Not the most widely used in practice, but easy to 
understand.

• We take a forward difference in time and a 
centered difference in space.

𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + F 𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛 +∆𝑡𝑓𝑖

𝑛

• The constant F is the mesh Fourier number

𝐹 = 𝛼
∆𝑡

∆𝑥2

• For this method to be stable we must choose Dt 

and Dx such that 𝐹 ≤
1

2



ROD COOLS AS TIME 
PROGRESSES

• Initial temperature in rod: 100 sin (px)
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PARTITIONING

• One data item per grid point in this case 
(temperature)

• Domain decomposition: divide the grid into 
subgrids.  Assign each to a processor. 

63



COMMUNICATION

• Identify communication pattern between primitive 
tasks

• Each interior primitive task has three incoming 
and three outgoing channels
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SEQUENTIAL EXECUTION TIME

• t – time to update element

• n – number of section

• Each row has n+1 spots in the matrix

• But the left and right column are always zero

• m – number of iterations

• Sequential execution time: m t(n-1)
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PARALLEL EXECUTION TIME

• p – number of processors

• l – message latency

• Parallel execution time m(t(n-1)/p+2l)

• But is that faster???
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SUMMARY: DESIGN STEPS

• Partition computation

• Analyze communication

• Agglomerate tasks

• Map tasks to processors

• Goals

• Maximize processor utilization

• Minimize inter-processor communication
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SERIAL PSEUDOCODE (TRANSLATE 
TO YOUR LANGUAGE)

#Determine deltas

dx=float(L)/(Nx+1)

dt=float(T)/(Nt+1)

#Set mesh constant

F = a*dt/dx**2

#Check stability criterion

if ( F>0.5) exit

#Initialize u

u=100.*sin(pi*dx*i) for i in 0/1 to Nx/Nx+1

#Initialize old u

u_old=u

#Start update loop

for t=1,Nt+1 do

for n=1/2,Nx-1/Nx do

u[i] = u_n[i] + F*(u_n[i+1] - 2*u_n[i] + u_n[i+1])

enddo

# Boundary conditions 

u[0/1] = 0; u[Nx/Nx+1] = 0 

# Update u_n before next step 

u_n= u 

enddo



STEADY STATE HEAT DISTRIBUTION 
PROBLEM
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80-100

60-80

40-60

20-40

0-20

Steam

SteamSteam

Ice bath



SOLVING THE PROBLEM

• Underlying PDE is the Poisson equation

• This is an example of an elliptical PDE

• Will create a 2-D grid

• Each grid point represents value of state state 
solution at particular (x, y) location in plate
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HEART OF SEQUENTIAL C 
PROGRAM

71

w[i][j] = (u[i-1][j] + u[i+1][j] +

u[i][j-1] + u[i][j+1]) / 4.0;

u(i,j+1)

u(i+1,j)

w(i,j)

u(i-1,j)

u(i,j-1)



PARALLEL PROGRAM DESIGN

• Associate primitive task with each element of 
matrix

• Examine communication pattern

• Agglomerate tasks in same column

• Static number of identical tasks

• Regular communication pattern

• Strategy: agglomerate columns, assign one block 
of columns to each task
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RESULT OF AGGLOMERATION AND 
MAPPING
FORTRAN LAYOUT
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GHOST POINTS

• Ghost points: memory locations used to store 
redundant copies of data held by neighboring 
processes

• Allocating ghost points as extra columns 
simplifies parallel algorithm by allowing same 
loop to update all cells
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MATRICES AUGMENTED
WITH GHOST POINTS
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Purple cells are the ghost points.



COMMUNICATION IN AN 
ITERATION
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This iteration the process is responsible for

computing the values of the yellow cells.



EXAMPLE DECOMPOSITION
C/PYTHON LAYOUT
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16 × 16 grid

divided among 4 processors



COMMUNICATIONS
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16 × 16 griiided among 4 processors



HOW TO SYNCHRONIZE THE 
SENDS AND RECEIVES?

• Imagine we have a number of processes 
communicating with those next to them

• The rod in an ice bath example

• Each task is one spot of the rod in time

• Or the heated plate example

• Each task is one ‘column’ of the plate in time

• How would they communicate?

79



COMMUNICATION 
SYNCHRONIZATION

• Each task has a rank:

0      1         2       3       4         5       6       7        8       9

• Note that ranks 0 and 9 only have to do one 
communication

• All the other ranks have to communicate with the 
rank one to the left and the rank one to the right
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COMMUNICATION STRATEGY 1

0      1         2       3       4        5        6       7        8       9

• First ‘round’ of the communication: each rank 
sends to the rank one to the left, and receives 
from the one to the right

• On the second ‘round’, it does the reverse

• Will this work?  Why or why not?
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COMMUNICATION STRATEGY 2

0       1        2       3       4        5       6         7       8       9

• Assume an even number of nodes (can be enforced 
in the code)

• First ‘round’ of the communication: each even rank 
sends to the odd rank one to the left, and each odd 
rank receives from the one to the right

• On the second ‘round’, it does the reverse

• This needs two more rounds for a total of 4!

• Will this work?  Why or why not?
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COMMUNICATION STRATEGY 3

0      1        2        3       4        5       6        7       8        9

• Assume an even number of nodes

• First ‘round’ of the communication: each even rank 
and the odd rank to the left do a MPI_SendRecv()

• On the second ‘round’, each odd rank and the even to 
the right do a MPI_SendRecv()

• Will this work?  Why or why not?
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SPECIAL CONSIDERATIONS

• Need to handle special cases of ranks 0 and 
p-1

• Probably easiest to have them send and receive 
dummy values

• MPI_PROC_NULL is a predefined "no op"
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WHAT WILL THIS LOOK LIKE IN 
MPI?

• int MPI_Send( void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm ) 

• int MPI_Recv( void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm, 
MPI_Status *status )
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THE EVEN EASIER WAY

if rank==0

up=MPI_PROC_NULL

or for Python MPI.PROC_NULL

down=rank+1

else if rank==npes-1

up=rank-1

down=MPI_PROC_NULL

else

up=rank-1

down=rank+1

end



THEN WE CAN USE SENDRECV

• First send up and receive down
comm.Sendrecv([w[1,1:nc+1],MPI.DOUBLE],up,tag,[w[nrl+1,1:nc
+1],MPI.DOUBLE],down)

• Then send down and receive up
comm.Sendrecv([w[nrl,1:nc+1],MPI.DOUBLE],down,tag,[w[0,1:nc+1],
MPI.DOUBLE],up)

C uses

(upperlimit=500,ghost_rows=1)

Following is all one line
MPI_Sendrecv (u[upperlimit], N, MPI_DOUBLE, rank+1, 
0,u[upperlimit+ghost_rows], N, MPI_DOUBLE, rank+1, 0, 
MPI_COMM_WORLD, &status);



FORTRAN USES

call MPI_SENDRECV(w(1:nr,1), nr,MPI_DOUBLE_PRECISION,left,tag, &     

w(1:nr,ncl+1),nr,MPI_DOUBLE_PRECISION,right,tag,        &

MPI_COMM_WORLD,status,ierr)

call MPI_SENDRECV(w(1:nr,ncl),nr,MPI_DOUBLE_PRECISION,right,tag,& 

w(1:nr,0),nr,MPI_DOUBLE_PRECISION,left,tag,               &

MPI_COMM_WORLD,status,ierr)



PARALLEL ALGORITHM 2

• Associate primitive task with each matrix element

• Agglomerate tasks into blocks that are as square 
as possible (checkerboard block decomposition)

• Add rows of ghost points to all four sides of 
rectangular region controlled by process
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EXAMPLE DECOMPOSITION

90

16 × 16 grid

divided among

16 processors



IMPLEMENTATION DETAILS

• Using ghost points around 2-D blocks requires 
extra copying steps

• Ghost points for left and right sides are not in 
contiguous memory locations

• An auxiliary buffer must be used when receiving 
these ghost point values

• Similarly, buffer must be used when sending 
column of values to a neighboring process
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MPI TYPES

• MPI provides derived datatypes which can 
simplify the creation of columns (for C) or rows 
(for Fortran)

• A little beyond our scope but not hard to use.

• Create an  MPI_Type_vector
• C
• MPI_Datatype columntype;

• MPI_Type_vector(nrows,1,ncols,MPI_FLOAT,&columntype);

• MPI_Commit(&columntype);

• Fortran
• integer   :: rowtype

• Call MPI_Type_vector(ncols,1,nrows,MPI_REAL,rowtype,ierr)

• Call MPI_Commit(rowtype,ierr)



PGAS



PARTITIONED GLOBAL 
ADDRESS SPACE

• PGAS abstracts the data decomposition problem

• SPMD (Single Program Multiple Data) model 

• Arrays are declared as global entities and are 
automatically decomposed and distributed 
among processing elements (PEs).

• Local hardware models are utilized to maximize 
efficiency

• Often implemented through coarrays

• Typically uses a message-passing 
communications layer



PGAS LANGUAGES

• Unified Parallel C (UPC)/Unified Parallel C++ 
(UPC++)

• Co-Array Fortran

• Part of the 2008 standard

• Chapel



CO-ARRAY FORTRAN

• To see how this works we’ll look at Co-Array Fortran

• Each copy of the program running as a process is 
called an image.

• Each image runs as a normal Fortran program.

• Example declaration:
• Real, dimension(1000), codimension[*] :: x,y

• Real, codimension[*] :: z

• Then
x(:)=y(:)[q]

copies the version of coarray y on image q to coarray x on the 
executing image (which could be all of them).



COARRAYS

• Coarrays always exist on each image

• Number of images is returned by an intrinsic 
function num_images()

• Intrinsic function this_image()returns the 

image index (counting from 1 as usual for 
Fortran)

• With no square brackets the array is only that on 
the image (the local copy)



COARRAY DECLARATIONS

• Coarrays are declared much like any Fortran array 
and can have rank higher than 1

• The upper bound for the codimension is never 
specified, so that any number of images can be 
instantiated

• The total number of subscripts (dimensions) 
local+codimension is limited to 15

• Example
• real :: array(10,20)[10,-1:8,0:*]

• Shape is 10,20.  If we set up 128 images the lower cobounds
are 1,-1,0 and the upper cobounds are 10,8,1



MORE ABOUT COARRAYS

• Coarrays may be allocatable

• Coarrays may contain derived types

• Coarrays may not be pointers (either Fortran style 
or c_ptr style)

• Codimension bounds are column-oriented as for 
regular bounds

• Must be allocated over all images (no support for 
subsetting processes yet)

• Only a single image can be addressed at a time 
(as of Fortran 2008)



BARRIERS

• The only barrier implemented now is SYNC

• sync_all

• sync_images(integer, integer array, 
or *)

• sync_memory



EXAMPLE
• From gfortran wiki

• Scales poorly due to serialization of broadcast

• 2015 standard introduces many more collective 
communications

! Created by Tobias Burnus 2010. 

program Hello_World

implicit none

integer :: i

! Local variable 

character(len=20) :: name[*] ! scalar coarray

! Note: "name" is the local variable while "name[<index>]“

! accesses the variable on a remote image

! Interact with the user on Image 1 

if (this_image() == 1) then 

write(*,'(a)',advance='no') 'Enter your name: ' 

read(*,'(a)') name 

! Distribute inormation to other images 

do i = 2, num_images() name[i] = name 

end do

end if 

sync all ! Barrier to make sure the data has arrived 

! I/O from all nodes 

write(*,'(3a,i0)') 'Hello ',trim(name),' from image ', this_image()

end program Hello_world



CRITICAL SECTIONS

• Like OpenMP a critical section can be defined

critical

Code executed on one image at a time

end critical



UPC/C++

#include <upc.h>

printf("Thread %d of %d: hello UPC world\n", 

MYTHREAD, THREADS);

• Looks more like OpenMP than CAF does.

• UPC++ looks more like CAF

shared_var<int> s; //shared ints in UPC 

shared_array<int> sa(8); //shared int sa[8] 



RESOURCES

• http://www.opencoarrays.org/

• https://crd.lbl.gov/departments/computer-
science/CLaSS/research/DEGAS/degas-
software-releases/

http://www.opencoarrays.org/

