
PARALLEL
PROGRAMMING WITH

MPI
Part 2

GLOBAL
COMMUNICATIONS
REFRESHER

BROADCAST

• Write a program that generates an array of values
from 1 to 10 only on the root process

• Broadcast the array to each process.

• Have each process print the array.

• Test it with four processes on the frontend

REDUCTION

• Write a program that generates an array of
mpi_rank to mpi_rank +10 on each process.

• Have each process sum its array (Fortran and
Python programmers may use the sum intrinsic).

• Perform a reduction to get the overall sum.

• Print the grand sum on all processes. What do
you see?

• Have only the master print the grand sum.

• Try replacing Reduce with Allreduce and have all
the processes print the grand sum.

GATHER

• Modify your program that creates the arrays
mpi_rank to mpi_rank+10 so that they are
gathered into the root process.

• Convert gather to allgather.

PERFORMANCE
ANALYSIS

SPEEDUP FORMULA

7

timeexecution Parallel

timeexecution Sequential
 Speedup 

EXECUTION TIME COMPONENTS

• For a problem of size n on p processors

• Inherently sequential computations: (n)

• Potentially parallel computations: (n)

• Communication operations: (n,p)

• The letters are, respectively, sigma, phi, and kappa

• Single processor is (n) + (n)

• No (n,p)

• p processors is (n) + (n)/p + (n,p)

• This is the ideal
8

SPEEDUP EXPRESSION

• Speedups may be less than ideal due to
operating system jitter, network noise, etc.

• Occasionally speedup may be better than
expected due to cache effects (smaller arrays are
more cache efficient)

9

y (n, p) =
s (n)+f(n)

s (n)+f(n) / p+k (n, p)

(N)/P: COMPUTATION TIME

10

(N,P): COMMUNICATION TIME

11

(N)/P + (N,P): TOTAL TIME
TAKEN

12

EFFICIENCY

13

timeexecution Parallel used Processors

timeexecution Sequential
 Efficiency




e(n, p) =
s (n)+f(n)

p s (n)+f(n) / p+k (n, p)()

e(n, p) =
s (n)+f(n)

ps (n)+f(n)+ pk (n, p)

(epsilon)

Or equivalently

0  (N,P)  1

14

),()()(

)()(
),(

pnpnnp

nn
pn











All terms > 0  (n,p) > 0

Denominator > numerator  (n,p) < 1

AMDAHL’S LAW

15

y (n, p) =
s (n)+f(n)

s (n)+f(n) / p +k (n, p)

<
s (n)+f(n)

s (n)+f(n) / p

Let f = (n)/((n) + (n))

pff /)1(

1




f is the fraction of the part that

must be done sequentially.

0 ≤ f ≤ 1

Thus

EXAMPLE 1

• 95% of a program’s execution time occurs inside
a loop that can be executed in parallel. What is
the maximum speedup we should expect from a
parallel version of the program executing on 8
CPUs? What is the efficiency?

• f = 0.05

16

9.5
8/)05.01(05.0

1





74.0
9.5/*8_*

_


t

t

timeparp

timeseq


POP QUIZ

• An oceanographer gives you a serial program and
asks you how much faster it might run on 8
processors.

• You can only find one function amenable to a
parallel solution.

• Benchmarking and profiling on a single processor
reveals 80% of the execution time is spent inside
this function.

• What is the best speedup a parallel version is
likely to achieve on 8 processors?

17

POP QUIZ ANSWER

• 20% of a program’s execution time is spent within
inherently sequential code. What is the maximum
speedup we should expect from a parallel version
of the program executing on 8 CPUs? What is the
efficiency?

• f = 0.2

18

33.3
8/)2.01(2.0

1





42.0
33.3/*8_*

_


t

t

timeparp

timeseq


POP QUIZ EXTENDED ANSWER

• 20% of a program’s execution time is spent within
inherently sequential code. What is the limit to
the speedup achievable by a parallel version of
the program?

• f = 0.2

• p->∞

19

5
2.0

1

/)2.01(2.0

1
lim 




 pp


POP QUIZ

• A computer animation program generates a
feature movie frame-by-frame.

• Each frame can be generated independently and
is output to its own file.

• If it takes 99 seconds to render a frame and 1
second to output it, how much speedup can be
achieved by rendering the movie on 100
processors?

20

AMDAHL EFFECT

• As n (problem size) increases, (n)/p typically
dominates (n,p) (communication time)

• In other words, as the problem size increases, the
communication drops down as a percentage of time
taken

• Thus as n increases, speedup increases

21

ILLUSTRATION OF AMDAHL
EFFECT

22

n = 100

n = 1,000

n = 10,000
Speedup

Processors

SCALABILITY

STRONG SCALING VS. WEAK
SCALING

• The Amdahl Effect suggests that more work per
process is better.

• Strong scaling: same quantity of work divided
among an increasing number of processes.

• Weak scaling: amount of work per process fixed,
number of processes increased.

POINT-TO-POINT
COMMUNICATIONS

• Individual processes send and receive messages
from other processes.

• Send can be

• Synchronous or asynchronous

• Buffered or unbuffered

• Sent to a particular destination

• Receive can be

• Blocking or non-blocking

• Buffered or non-buffered

• Received from a particular source

MESSAGE COST

• One of the most important things to keep in mind

Tmsg= a + bBytes (an approximation)

26Message length

Time

A FEW WARNINGS

• The message cost is rarely linear; there are
usually “jaggies” and other discontinuities

• The equation usually only holds on an idle
network

• The message cost equation is really a function of
the application topology, the network topology,
and then number of processors!

27

NETWORK TYPES

• High latency, low- to moderate-bandwidth:
• Ethernet

• 1GE 1 gigabit per second, may be a hub topology

• 10GE 10 gigabits per second, always switched

• Typical switch latency for 10GE is approximately 230 ns

• Low-latency, high bandwidth:
• Most popular (and surviving) is InfiniBand

• Different ratings are QDR (quad data rate) and FDR (fourteen
data rate)

• Typical switch latency 100 ns for FDR

• Bandwidth approximately 56 Gb/sec for FDR

• Intel OmniPath is comparable

POINT-TO-POINT
MESSAGES

FUNCTION MPI_SEND (C)

int MPI_Send (

void *message,

int count,

MPI_Datatype datatype,

int dest,

int tag,

MPI_Comm comm

)

30

FUNCTION MPI_SEND
(FORTRAN)

• MPI_SEND(buf, count, datatype, dest,
tag, comm, ierr)

• integer count, datatype, dest, tag,
comm, ierr

• <type> buf(<length>)

• Example:
• call
MPI_SEND(myval,1,MPI_INTEGER,my_rank+1,0

, MPI_COMM_WORLD,ierr)

31

FUNCTION MPI_SEND (PYTHON,
MPI4PY)

• send (sendobjc, destination, tag)

• Note that the lower-case ‘send’ handles pickled objects; use the
title-case ‘Send’ for NumPy arrays as in the example below.

Default for both "destination" and "source" is 0 (root) (thus don't
match if only defaults used).

• Example:
• MPI.COMM_WORLD.Send ([data,MPI.DOUBLE], rank+1, 0)

• data is an initialized numpy array

• When creating a numpy array, by default it creates it as a double. It is
advisable to provide an explicit dtype to be sure your types match.

• To send a scalar create a one-element NumPy array.

• The number of elements sent is based on the size of the ‘data’
array

• The error status is returned by the subroutine
32

FUNCTION MPI_RECV (C)

int MPI_Recv (

void *message,

int count,

MPI_Datatype datatype,

int source,

int tag,

MPI_Comm comm,

MPI_Status *status

)

33

FUNCTION MPI_RECV
(FORTRAN)

• MPI_RECV(buf, count, datatype,
source, tag, comm, status, ierr)

• integer count, datatype, source, tag,
comm

• integer status(MPI_STATUS_SIZE)

• <type> buf(<length>)

• Example
• call MPI_RECV(myval, 1, MPI_INTEGER,
my_rank-1, 0, MPI_COMM_WORLD,

status, ierr)

34

FUNCTION MPI_RECV (PYTHON)

• Recv (recvobjc, destination, tag)

• Note that the lower-case ‘recv’ handles pickled objects;
use the title-case ‘Recv’ for NumPy arrays

• Example:
• MPI.COMM_WORLD.Recv ([data,MPI.DOUBLE], rank-1,

0)

• data is an initialized numpy array

• When creating a numpy array, by default it creates it as a double

• The error status is returned by the subroutine

35

CODING SEND/RECEIVE

36

…

if (ID == j) {

…

Receive from i

…

}

…

if (ID == i) {

…

Send to j

…

}

…

Receive is before Send.

Why does this work?

EXAMPLE (C)

#include <mpi.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

// Initialize the MPI environment

MPI_Init(NULL, NULL);

// Find out rank, size

int world_rank;

MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

int world_size;

MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// We are assuming at least 2 processes for this task

if (world_size < 2) {

fprintf(stderr, "World size must be greater than 1 for %s\n", argv[0]);

MPI_Abort(MPI_COMM_WORLD, 1);

}

int number;

//Works because 1 will necessarily be in receive state while 0 goes into send state

if (world_rank == 0) {

INSIDE MPI_SEND AND
MPI_RECV

38

Sending Process Receiving Process

Program

Memory

System

Buffer

System

Buffer

Program

Memory

MPI_Send MPI_Recv

RETURN FROM MPI_SEND

• Function blocks until message buffer free

• Message buffer is free when

• Message copied to system buffer, or

• Message transmitted

• Typical scenario

• Message copied to system buffer

• Transmission overlaps computation

39

RETURN FROM MPI_RECV

• Function blocks until message in buffer

• If message never arrives, function never returns

40

DEADLOCK

• Deadlock: process waiting for a condition that will
never become true

• Easy to write send/receive code that deadlocks

• Two processes: both receive before send

• Send tag doesn’t match receive tag

• Process sends message to wrong destination process

• Both send large messages to each other first, then
receive. Too big for buffers.

41

MPI4PY
import numpy as np

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank =comm.Get_rank()

#Note alternation in Send/Recv order

if comm.size==2:

if comm.rank == 0:

sendmsg = np.array([777],dtype=float)

comm.Send([sendmsg,MPI.DOUBLE], dest=1, tag=0)

rec=comm.recv(source=1, tag=1)

else:

rec=np.empty(1,dtype=float)

comm.Recv([rec,MPI.DOUBLE],source=0, tag=0)

sendmsg = "abc"

comm.send(sendmsg, dest=0, tag=1)

print rank, rec

POINT-TO-POINT
EXERCISES

IJOB

• Use ijob for your experiments here

• ijob –A rivanna-training –p standard –c 8

SEND RECEIVE

• Write a program for 2 processes in which rank 0
sends a message to rank 1 and receives a
message back from rank 1.

• Modify this code to a "ping pong" where the
processes exchange messages some number of
times. Try it with 1 first, then try 10 exchanges.

SEND RECEIVE

• Write a program in which each process determines a
unique partner to exchange messages. One way to
do this is to use

if rank < npes//2:

partner=npes//2 + rank

else

partner=rank-npes//2

• Each tasks sends its rank to its partner. Each task
receives the partner's rank.

• Print the message received when done.

• Check that your program works for 1 process.

SENDRECV

• Write a program in which all processes send a
message to their left and receive from their right,
except for the ends.

• Make the ends not send any message

• Make the messages circular, i.e. 0 receives from np-1
and np-1 receives from 0

APPLICATION EXAMPLE:
PARTIAL DIFFERENTIAL
EQUATIONS

NUMERICAL SOLUTION OF PARTIAL
DIFFERENTIAL EQUATIONS

• We will examine point-to-point communications
for the example of partial differential equations

• This is a very typical application for P2P
messaging

• Definitions:

• Ordinary differential equation: equation containing
derivatives of a function of one variable

• Partial differential equation: equation containing
derivatives of a function of two or more variables

EXAMPLES OF PHENOMENA
MODELED BY PDES

• Air flow over an aircraft wing

• Blood circulation in human body

• Water circulation in an ocean

• Bridge deformations as its carries traffic

• Evolution of a thunderstorm

• Oscillations of a skyscraper hit by earthquake

• Strength of a toy

50

MODEL OF SEA SURFACE
TEMPERATURE
IN ATLANTIC OCEAN

51

Courtesy MICOM group

at the Rosenstiel School

of Marine and Atmospheric

Science, University of Miami

SOLVING PDES

• Finite element method

• Finite difference method (our focus)

• Converts PDE into matrix equation

• Result is usually a sparse matrix

• Matrix-based algorithms represent matrices explicitly

• Matrix-free algorithms represent matrix values
implicitly (our focus)

52

LINEAR SECOND-ORDER PDES

• Linear second-order PDEs are of the form

where A - H are functions of x and y only

• Elliptic PDEs: B2 - AC < 0

• Parabolic PDEs: B2 - AC = 0

• Hyperbolic PDEs: B2 - AC > 0

53

HGuFuEuCuBuAu yxyyxyxx 2

DIFFERENCE QUOTIENTS

54

f(x+h/2)

f(x-h/2)

f'(x)

x x+h/2x-h/2 x+hx-h

FORWARD-DIFFERENCE
FORMULA FOR 1ST DERIVATIVE

55

𝑓′(𝑥) ≈
𝑓 𝑥 + ∆𝑥 − 𝑓(𝑥)

∆𝑥

CENTERED-DIFFERENCE
FORMULAS FOR 1ST, 2D
DERIVATIVES

56

h

hxfhxf
xf

)2/()2/(
)('




2

)()(2)(
)(''

h

hxfxfhxf
xf




HEAT DIFFUSION
EQUATIONS

BOUNDARY VALUE PROBLEM

58

Ice water Rod Insulation

ONE-DIMENSIONAL DIFFUSION
EQUATION

• This equation can be represented by the PDE
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕2𝑥
+ 𝑓

• In this equation, a is the diffusion coefficient (we
will assume it is constant) and f is the forcing
function.

• The forcing is often zero.

FINITE-DIFFERENCE
APPROXIMATION
I=SPACE INDEX, N=TIME INDEX

𝑥𝑖=i∆𝑥 , 𝑡𝑛 = n∆𝑡

𝑢𝑖
𝑛+1

𝑢𝑖−1
𝑛+1 𝑢𝑖

𝑛 𝑢𝑖+1
𝑛

x

x x x

time

space

FINITE DIFFERENCE FORWARD
EULER METHOD

• Not the most widely used in practice, but easy to
understand.

• We take a forward difference in time and a
centered difference in space.

𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + F 𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛 +∆𝑡𝑓𝑖

𝑛

• The constant F is the mesh Fourier number

𝐹 = 𝛼
∆𝑡

∆𝑥2

• For this method to be stable we must choose Dt

and Dx such that 𝐹 ≤
1

2

ROD COOLS AS TIME
PROGRESSES

• Initial temperature in rod: 100 sin (px)

62

PARTITIONING

• One data item per grid point in this case
(temperature)

• Domain decomposition: divide the grid into
subgrids. Assign each to a processor.

63

COMMUNICATION

• Identify communication pattern between primitive
tasks

• Each interior primitive task has three incoming
and three outgoing channels

64

SEQUENTIAL EXECUTION TIME

• t – time to update element

• n – number of section

• Each row has n+1 spots in the matrix

• But the left and right column are always zero

• m – number of iterations

• Sequential execution time: m t(n-1)

65

PARALLEL EXECUTION TIME

• p – number of processors

• l – message latency

• Parallel execution time m(t(n-1)/p+2l)

• But is that faster???

66

SUMMARY: DESIGN STEPS

• Partition computation

• Analyze communication

• Agglomerate tasks

• Map tasks to processors

• Goals

• Maximize processor utilization

• Minimize inter-processor communication

67

SERIAL PSEUDOCODE (TRANSLATE
TO YOUR LANGUAGE)

#Determine deltas

dx=float(L)/(Nx+1)

dt=float(T)/(Nt+1)

#Set mesh constant

F = a*dt/dx**2

#Check stability criterion

if (F>0.5) exit

#Initialize u

u=100.*sin(pi*dx*i) for i in 0/1 to Nx/Nx+1

#Initialize old u

u_old=u

#Start update loop

for t=1,Nt+1 do

for n=1/2,Nx-1/Nx do

u[i] = u_n[i] + F*(u_n[i+1] - 2*u_n[i] + u_n[i+1])

enddo

Boundary conditions

u[0/1] = 0; u[Nx/Nx+1] = 0

Update u_n before next step

u_n= u

enddo

STEADY STATE HEAT DISTRIBUTION
PROBLEM

69

80-100

60-80

40-60

20-40

0-20

Steam

SteamSteam

Ice bath

SOLVING THE PROBLEM

• Underlying PDE is the Poisson equation

• This is an example of an elliptical PDE

• Will create a 2-D grid

• Each grid point represents value of state state
solution at particular (x, y) location in plate

70

),(yxfuu yyxx 

HEART OF SEQUENTIAL C
PROGRAM

71

w[i][j] = (u[i-1][j] + u[i+1][j] +

u[i][j-1] + u[i][j+1]) / 4.0;

u(i,j+1)

u(i+1,j)

w(i,j)

u(i-1,j)

u(i,j-1)

PARALLEL PROGRAM DESIGN

• Associate primitive task with each element of
matrix

• Examine communication pattern

• Agglomerate tasks in same column

• Static number of identical tasks

• Regular communication pattern

• Strategy: agglomerate columns, assign one block
of columns to each task

72

RESULT OF AGGLOMERATION AND
MAPPING
FORTRAN LAYOUT

73

GHOST POINTS

• Ghost points: memory locations used to store
redundant copies of data held by neighboring
processes

• Allocating ghost points as extra columns
simplifies parallel algorithm by allowing same
loop to update all cells

74

MATRICES AUGMENTED
WITH GHOST POINTS

75

Purple cells are the ghost points.

COMMUNICATION IN AN
ITERATION

76

This iteration the process is responsible for

computing the values of the yellow cells.

EXAMPLE DECOMPOSITION
C/PYTHON LAYOUT

77

16 × 16 grid

divided among 4 processors

COMMUNICATIONS

78

16 × 16 griiided among 4 processors

HOW TO SYNCHRONIZE THE
SENDS AND RECEIVES?

• Imagine we have a number of processes
communicating with those next to them

• The rod in an ice bath example

• Each task is one spot of the rod in time

• Or the heated plate example

• Each task is one ‘column’ of the plate in time

• How would they communicate?

79

COMMUNICATION
SYNCHRONIZATION

• Each task has a rank:

0 1 2 3 4 5 6 7 8 9

• Note that ranks 0 and 9 only have to do one
communication

• All the other ranks have to communicate with the
rank one to the left and the rank one to the right

80

COMMUNICATION STRATEGY 1

0 1 2 3 4 5 6 7 8 9

• First ‘round’ of the communication: each rank
sends to the rank one to the left, and receives
from the one to the right

• On the second ‘round’, it does the reverse

• Will this work? Why or why not?

81

COMMUNICATION STRATEGY 2

0 1 2 3 4 5 6 7 8 9

• Assume an even number of nodes (can be enforced
in the code)

• First ‘round’ of the communication: each even rank
sends to the odd rank one to the left, and each odd
rank receives from the one to the right

• On the second ‘round’, it does the reverse

• This needs two more rounds for a total of 4!

• Will this work? Why or why not?
82

COMMUNICATION STRATEGY 3

0 1 2 3 4 5 6 7 8 9

• Assume an even number of nodes

• First ‘round’ of the communication: each even rank
and the odd rank to the left do a MPI_SendRecv()

• On the second ‘round’, each odd rank and the even to
the right do a MPI_SendRecv()

• Will this work? Why or why not?

83

SPECIAL CONSIDERATIONS

• Need to handle special cases of ranks 0 and
p-1

• Probably easiest to have them send and receive
dummy values

• MPI_PROC_NULL is a predefined "no op"

84

WHAT WILL THIS LOOK LIKE IN
MPI?

• int MPI_Send(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

• int MPI_Recv(void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Status *status)

85

THE EVEN EASIER WAY

if rank==0

up=MPI_PROC_NULL

or for Python MPI.PROC_NULL

down=rank+1

else if rank==npes-1

up=rank-1

down=MPI_PROC_NULL

else

up=rank-1

down=rank+1

end

THEN WE CAN USE SENDRECV

• First send up and receive down
comm.Sendrecv([w[1,1:nc+1],MPI.DOUBLE],up,tag,[w[nrl+1,1:nc
+1],MPI.DOUBLE],down)

• Then send down and receive up
comm.Sendrecv([w[nrl,1:nc+1],MPI.DOUBLE],down,tag,[w[0,1:nc+1],
MPI.DOUBLE],up)

C uses

(upperlimit=500,ghost_rows=1)

Following is all one line
MPI_Sendrecv (u[upperlimit], N, MPI_DOUBLE, rank+1,
0,u[upperlimit+ghost_rows], N, MPI_DOUBLE, rank+1, 0,
MPI_COMM_WORLD, &status);

FORTRAN USES

call MPI_SENDRECV(w(1:nr,1), nr,MPI_DOUBLE_PRECISION,left,tag, &

w(1:nr,ncl+1),nr,MPI_DOUBLE_PRECISION,right,tag, &

MPI_COMM_WORLD,status,ierr)

call MPI_SENDRECV(w(1:nr,ncl),nr,MPI_DOUBLE_PRECISION,right,tag,&

w(1:nr,0),nr,MPI_DOUBLE_PRECISION,left,tag, &

MPI_COMM_WORLD,status,ierr)

PARALLEL ALGORITHM 2

• Associate primitive task with each matrix element

• Agglomerate tasks into blocks that are as square
as possible (checkerboard block decomposition)

• Add rows of ghost points to all four sides of
rectangular region controlled by process

89

EXAMPLE DECOMPOSITION

90

16 × 16 grid

divided among

16 processors

IMPLEMENTATION DETAILS

• Using ghost points around 2-D blocks requires
extra copying steps

• Ghost points for left and right sides are not in
contiguous memory locations

• An auxiliary buffer must be used when receiving
these ghost point values

• Similarly, buffer must be used when sending
column of values to a neighboring process

91

MPI TYPES

• MPI provides derived datatypes which can
simplify the creation of columns (for C) or rows
(for Fortran)

• A little beyond our scope but not hard to use.

• Create an MPI_Type_vector
• C
• MPI_Datatype columntype;

• MPI_Type_vector(nrows,1,ncols,MPI_FLOAT,&columntype);

• MPI_Commit(&columntype);

• Fortran
• integer :: rowtype

• Call MPI_Type_vector(ncols,1,nrows,MPI_REAL,rowtype,ierr)

• Call MPI_Commit(rowtype,ierr)

PGAS

PARTITIONED GLOBAL
ADDRESS SPACE

• PGAS abstracts the data decomposition problem

• SPMD (Single Program Multiple Data) model

• Arrays are declared as global entities and are
automatically decomposed and distributed
among processing elements (PEs).

• Local hardware models are utilized to maximize
efficiency

• Often implemented through coarrays

• Typically uses a message-passing
communications layer

PGAS LANGUAGES

• Unified Parallel C (UPC)/Unified Parallel C++
(UPC++)

• Co-Array Fortran

• Part of the 2008 standard

• Chapel

CO-ARRAY FORTRAN

• To see how this works we’ll look at Co-Array Fortran

• Each copy of the program running as a process is
called an image.

• Each image runs as a normal Fortran program.

• Example declaration:
• Real, dimension(1000), codimension[*] :: x,y

• Real, codimension[*] :: z

• Then
x(:)=y(:)[q]

copies the version of coarray y on image q to coarray x on the
executing image (which could be all of them).

COARRAYS

• Coarrays always exist on each image

• Number of images is returned by an intrinsic
function num_images()

• Intrinsic function this_image()returns the

image index (counting from 1 as usual for
Fortran)

• With no square brackets the array is only that on
the image (the local copy)

COARRAY DECLARATIONS

• Coarrays are declared much like any Fortran array
and can have rank higher than 1

• The upper bound for the codimension is never
specified, so that any number of images can be
instantiated

• The total number of subscripts (dimensions)
local+codimension is limited to 15

• Example
• real :: array(10,20)[10,-1:8,0:*]

• Shape is 10,20. If we set up 128 images the lower cobounds
are 1,-1,0 and the upper cobounds are 10,8,1

MORE ABOUT COARRAYS

• Coarrays may be allocatable

• Coarrays may contain derived types

• Coarrays may not be pointers (either Fortran style
or c_ptr style)

• Codimension bounds are column-oriented as for
regular bounds

• Must be allocated over all images (no support for
subsetting processes yet)

• Only a single image can be addressed at a time
(as of Fortran 2008)

BARRIERS

• The only barrier implemented now is SYNC

• sync_all

• sync_images(integer, integer array,
or *)

• sync_memory

EXAMPLE
• From gfortran wiki

• Scales poorly due to serialization of broadcast

• 2015 standard introduces many more collective
communications

! Created by Tobias Burnus 2010.

program Hello_World

implicit none

integer :: i

! Local variable

character(len=20) :: name[*] ! scalar coarray

! Note: "name" is the local variable while "name[<index>]“

! accesses the variable on a remote image

! Interact with the user on Image 1

if (this_image() == 1) then

write(*,'(a)',advance='no') 'Enter your name: '

read(*,'(a)') name

! Distribute inormation to other images

do i = 2, num_images() name[i] = name

end do

end if

sync all ! Barrier to make sure the data has arrived

! I/O from all nodes

write(*,'(3a,i0)') 'Hello ',trim(name),' from image ', this_image()

end program Hello_world

CRITICAL SECTIONS

• Like OpenMP a critical section can be defined

critical

Code executed on one image at a time

end critical

UPC/C++

#include <upc.h>

printf("Thread %d of %d: hello UPC world\n",

MYTHREAD, THREADS);

• Looks more like OpenMP than CAF does.

• UPC++ looks more like CAF

shared_var<int> s; //shared ints in UPC

shared_array<int> sa(8); //shared int sa[8]

RESOURCES

• http://www.opencoarrays.org/

• https://crd.lbl.gov/departments/computer-
science/CLaSS/research/DEGAS/degas-
software-releases/

http://www.opencoarrays.org/

