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INTRODUCTION TO 
PARALLEL COMPUTING



PARALLEL COMPUTING MEANS:

• Executing more than one process at a time that 
are related (solving the same problem).

• Processes may or may not need to communicate 
with one another while they are running.

• Degree of communication required and 
organization of code determines the type of 
parallelization chosen.



TYPES OF PARALLELISM

• Embarrassingly parallel (high-throughput 
computing)

• Independent processes with little (or no) need to 
communicate.

• Data parallelism

• Divide the data into smaller parts.  Work on each part 
individually, then if necessary collect results and go to 
next phase.

• Task parallelism

• Perform multiple tasks at the same time on the data.



EXAMPLE

• The landscape service has several tasks to 
perform.  

• Turn off security system to access client's garage

• Mow lawn

• Edge lawn

• Weed garden

• Turn on water to sprinklers, check sprinklers, turn off 
water.

• Turn security system back on

• What can be done in parallel (assuming sufficient 
staff) and what must be serial? 



DATA DEPENDENCE GRAPH

• Directed graph

• Vertices = tasks

• Edges = dependences
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TASK PARALLELISM

• Independent tasks apply different operations to 
different data elements

• First and second statements

• Third and fourth statements
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a  2

b  3

m  (a + b) / 2

s  (a2 + b2) / 2

v  s - m2



DATA PARALLELISM

• Independent tasks apply same operation to different 
elements of a data set

• Safe to perform operations concurrently

• Pop quiz: can you think of an analogy to data 
parallelism that could be applied to the landscaping 
problem?  Assume you can buy any required 
"hardware" system.
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for i  0 to 99 do

a[i]  b[i] + c[i]

endfor



PARALLEL 
PROGRAMMING 

METHODS



APPROACHES TO PROGRAMMING 
PARALLEL COMPUTERS

• Extend compilers: translate sequential programs 
into parallel programs automatically

• Extend languages: add parallel operations

• Add parallel language layer as a library invoked by 
sequential languages

• Define totally new parallel language and compiler 
system
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STRATEGY 1: EXTEND 
COMPILERS

• Parallelizing compiler
• Detect parallelism in sequential program

• Produce parallel executable program

• Historical example: High-Performance Fortran
• Effort to make automatically parallelizing compiler

• Never caught on, but some constructs and concepts 
are in Fortran 90 and up

• Modern example:
• Compilers that autogenerate parallel threads (e.g. 

OpenMP).
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EXTEND COMPILERS (CONT.)

• Advantages
• Can leverage millions of lines of existing serial 

programs

• Saves time and labor

• Requires no retraining of programmers

• Sequential programming is easier than parallel 
programming

• Disadvantages
• Parallelism opportunities may be irretrievably lost 

when programs are written in sequential languages

• Performance of parallelizing compilers on broad range 
of applications still up in air
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STRATEGY 2: EXTEND 
LANGUAGE

• Add functions to a sequential language
• Create and terminate processes

• Synchronize processes

• Allow processes to communicate

• Advantages
• Easiest, quickest, and least expensive

• Allows existing compiler technology to be leveraged

• New libraries can be ready soon after new parallel 
computers are available

• Disadvantages
• Can be very difficult to implement, thus compromising 

availability and uptake
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EXTEND LANGUAGE (CONT)

• Example: Co-Array Fortran

• Originally an extended version of Fortran

• Now in the 2008 standard

• UPC

• Unified Parallel C

• Extended version of language

• Just recently updated to UPC++



STRATEGY 3: ADD A PARALLEL 
PROGRAMMING LAYER 

• Lower layer
• Usually in the form of libraries

• Core of computation

• Process manipulates its portion of data to produce its 
portion of result

• Upper layer
• Handled by programmer invoking the library 

procedures

• Creation and synchronization of processes

• Partitioning of data among processes
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STRATEGY 4: CREATE A PARALLEL 
LANGUAGE

• Develop a parallel language “from scratch”

• Examples: Occam, Chapel

• Advantages
• Allows programmer to communicate parallelism to 

compiler

• Improves probability that executable will achieve high 
performance

• Disadvantages
• Requires development of new compilers

• New languages may not become standards

• Programmer resistance
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CURRENT STATUS

• Low-level approach is most popular

• Augment existing language with low-level parallel 
constructs

• MPI and OpenMP are examples

• Advantages of low-level approach

• Efficiency

• Portability

• Disadvantage: More difficult to program and 
debug
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HARDWARE 



INTERCONNECTION NETWORKS

• Uses of interconnection networks

• Connect processors to shared memory

• Connect processors to each other

• Can be internal (inside a node) or external
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DISTRIBUTED MEMORY CLUSTERS

• Distributed memory multiple-CPU computer

• Each connected computer is called a node.

• Processes interact through message passing
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DISTRIBUTED MEMORY 
PROGRAMMING MODEL

• Communicate sending “messages”

• A message is an array of bytes

• send (int dest, char *buf, int len);

• receive (int &dest, char *buf, int &len);
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SCHEMATIC 
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DEVELOPING PARALLEL 
STRATEGIES



GRANULARITY

• An important factor in parallelization strategies is 
the granularity of the data.

• Coarse grained: lots of computation, little (or no) 
communication

• Fine grained: more evenly distributed between 
computation and communication.

• The granularity determines whether special 
hardware might be required.



ALGORITHM SELECTION

• Some algorithms that are fast in serial cannot be 
parallelized efficiently

• Some algorithms that are relatively slow in serial 
are easily parallelizable

• It may be necessary to change your algorithm for 
a parallel code

• Granularity plays an important role in algorithm 
parallelizability



EXAMPLE

• Two gene sequence alignment algorithms

• Smith-Waterman

• Compares segments of all possible length

• Optimizes similarity metric

• FASTA

• Local sequence alignment

• Heuristics
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LOAD BALANCING

• In parallel codes, the runtime is determined by 
the slowest process

• The computational load should be distributed so 
that each process does approximately the same 
share

• Example: with a fixed grid size a general-
circulation model must do more computations 
over land than over ocean.  Possible solution: 
smaller grid sizes over land.



PARTITIONING

• Dividing computation and data into pieces

• Domain decomposition

• Divide data into pieces

• Determine how to associate computations with the 
data

• Functional decomposition

• Divide computation into pieces

• Determine how to associate data with the 
computations
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EXAMPLE DOMAIN DECOMPOSITIONS
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1D

2D

3D



PARTITIONING CHECKLIST

Maximize computation to communication ratio

Minimize redundant computations and 
redundant data storage

Quantity of work on each process should be 
roughly the same size

Number of tasks is generally an increasing 
function of problem size
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COMMUNICATION

• Determine values passed among tasks

• Local communication
• Task needs values from a small number of other 

processes

• Global communication
• Significant number of processes contribute data to 

perform a computation

• Goals:
• Balance communication operations among tasks

• As much as possible, each task communicates only 
with a small group of neighbors
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AGGLOMERATION

• Grouping tasks into larger tasks

• Goals

• Improve performance

• Maintain scalability of program

• Simplify programming

• Due to overhead, it is better to send fewer, larger 
messages than more, smaller messages

• In MPI programming, the goal is often to create 
one agglomerated task per processor
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MAPPING

• Process of assigning tasks to processors.

• Threading (multicore): mapping done by operating 
system.

• Distributed memory system: user chooses how many 
processes, how many nodes, how many cores per 
node.  These choices can affect performance.

• Conflicting goals of mapping
• Maximize processor utilization
• Minimize interprocess communication

• Optimal mapping probably unsolvable in general. 
Must use heuristics and approximations.  Frequently 
requires experimentation (scaling studies).
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INTRODUCTION TO MPI



MESSAGE PASSING FOR 
DISTRIBUTED MEMORY

• The model is nodes (computing systems) 
connected by an interconnection network 

• Nodes consist of processor(s)/memory/network

• N nodes on the machine

• K processes are distributed to a subset of these 
N nodes 

• Processes communicate by sending/receiving 
messages.

• A message is a stream of bytes.
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NETWORK CHARACTERISTICS

• Latency

• Time from the request for the data to the arrival of the 
first byte

• Bandwidth

• Number of bytes per second that can be transmitted

• High latency,  medium to high bandwidth 
(inexpensive)

• Most Ethernet

• Low latency, high bandwidth (expensive)

• Infiniband, OmniPath



DISTRIBUTED MEMORY 
PROGRAMMING MODEL

• Each node runs M copies of your executable.  The 
total number of processes is M*Nnodes.  

• The executables are built using a communication 
library.

• Processes communicate by sending “messages.”

• A message is an array of bytes

• send (int dest, char *buf, int len);

• receive (int &dest, char *buf, int &len);
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COMMUNICATING WITH 
MESSAGES

41

Process Mi

(sender)

Process Mj

(receiver)



NAMING

• How do you “name” sources and targets?

• IP address and port pairs

• Logical task number

• Process ID

• Mailbox

• Other
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MPI

• MPI stands for Message Passing Interface

• MPI is a standard established by a committee of 
users and vendors

• MPI is the dominant communication library

• MPI is written in C and ships with bindings for 
Fortran.  Bindings have been written for many 
other languages including Python and R. C++ 
programmers should use the C functions.



MPI

• Usually when MPI is run the number of processes is 
determined and fixed for the lifetime of the program.

• MPI3 standard can spawn new processes but in a 
resource managed environment the total number must 
be requested in advance.

• MPI programs run under the control of an executor, 
usually called mpiexec or mpirun. In our local 
environment we use the SLURM process manager srun.

• mpiexec –np 16 myprog
• When running with srun under SLURM the executor does not

require the -np flag; it computes the number of processes from 
the task manager.

• Each process is running a copy of your program.

• Each copy has its own global variables, stack, heap, and 
program counter.
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C VERSUS FORTRAN VERSUS 
PYTHON

• Many of the examples in this lecture are C or C++ 
code

• With some Fortran and Python examples thrown in

• All of the C functions work the same for Fortran
• And mostly the same for Python

• The C++ bindings have been deprecated, so we 
use the C routines for C++ also.

• For Fortran and Python MPI function usage, see 
the resources at the HPC Bootcamp Collab site 
under Resources/docs/Fortran or 
Resources/docs/Python.
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COMMUNICATORS

• Communicator: opaque object that provides 
message-passing environment for processes

• MPI_COMM_WORLD

• Default communicator

• Includes all processes

• It is possible to create new communicators

• We will not discuss this
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COMMUNICATOR
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MPI_COMM_WORLD

Communicator

0

2

1

3

4

5

Processes

Ranks

Communicator Name



MESSAGE ENVELOPES

• A message is uniquely identified by:
• Source process ID

• Destination process ID

• Communicator

• Tag

• The "tag" can often be set to an arbitrary value 
such as zero.  It is needed only in cases where 
there may be multiple messages from the same 
source to the same destination in a short time 
interval, or a more complete envelope is desired 
for some reason.



MESSAGE BUFFERS

• MPI documentation refers to "send buffers" and 
"receive buffers."

• These refer to variables in the program whose 
contents are to be sent or received.  These 
variables must be set up by the programmer.

• The send and receive buffers cannot be the same 
unless the special "receive buffer" MPI_IN_PLACE 
is specified.

• Remember that the buffers we use when we call 
MPI routines are variables.



INITIALIZE MPI

• First MPI function called by each process

• Not necessarily first executable statement

• Allows system to do any necessary setup

• Establishes default communicator

• Python: mpi4py calls this when a communicator 
object is instantiated
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MPI_Init(&argc, &argv);

call MPI_Init(ierr)



DETERMINE NUMBER OF 
PROCESSES

• First argument is communicator

• Number of processes returned through second 
argument (an integer)
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MPI_Comm_size(MPI_COMM_WORLD, &p);

call MPI_Comm_size(MPI_COMM_WORLD,p,ierr)



DETERMINE PROCESS RANK

• First argument is communicator

• Process rank (in range 0, 1, …, p-1) returned 
through second argument.  It must be an integer.
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MPI_Comm_rank(MPI_COMM_WORLD, &id);

call MPI_Comm_rank(MPI_COMM_WORLD,id,ierr)



SHUTTING DOWN MPI

• Call after all other MPI library calls

• Allows system to free up MPI resources
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MPI_Finalize();

call MPI_Finalize()



MPI IN C

#include <stdio.h>

#include "mpi.h"

int main(int argc, char *argv[]) {

int rank, npes;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &npes);

if ( rank == 0 ) {

printf("Running on %d Processes\n",npes);

}

fflush(stdout);

printf("Greetings from process %d\n",rank);

MPI_Finalize();

}
54

Name this file mpi1.c



MPI IN FORTRAN

program hello

use mpi

integer :: myrank, nprocs

integer :: err

call MPI_INIT(err)

call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, err)

call MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, err)

if ( myrank .eq. 0 ) then

print *, 'Running on ',nprocs,' Processes'

endif

print *, 'Greetings from process ', myrank

call flush(6)

call MPI_FINALIZE(err)

end
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Name this file mpi1.f90



MPI IN PYTHON

from mpi4py import MPI

import sys

myrank = MPI.COMM_WORLD.Get_rank()

nprocs = MPI.COMM_WORLD.Get_size()

if myrank == 0:

sys.stdout.write("Running on %d processes\n" %(nprocs))

sys.stdout.write ("Greetings from process %d\n"%(myrank))
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Name this file mpi1.py



TRY IT!

• On the frontend interactive.hpc.virginia.edu

• Run

• module load gcc openmpi

• Python: Use Anaconda

• module load mpi4py/3.0.0-py3.6

• This will also load the correct MPI libraries.



RUN IT

• IMPORTANT! Use mpiexec and –np only on the 
frontends!!  Use for short tests only!!

• C compiling
• mpicc –o mpihello mpi1.c

• C++ compiling
• mpicxx –o mpihello mpi1.cxx

• Fortran compiling
• mpif90 –o mpihello mpi1.f90

• Both
• mpiexec –np 4 ./mpihello

• Python
• mpiexec –np 4 python mpi1.py



SUBMIT IT

• Write a SLURM script to run your program.

• Request 1 node and 5 cores on the parallel 
partition.

• The executor will know how many cores were 
requested from SLURM.  

• srun ./mpihello

• Or
• srun python mpihello.py



EXAMPLE 1
Simple static work distribution

No communication

60



TWO-DIMENSIONAL LATTICE 
RANDOM WALK
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SOLUTION METHOD

• At each step, the "walker" can move left, right, up, 
or down, with equal probability.

• We seek the distance from the origin after N 
steps.

• Theoretically, for N steps the distance is √N

• We want to test this empirically.  But one trial 
does not give us very good results.  We want to 
run a lot of trials and average the results.
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AGGLOMERATION AND 
MAPPING

• Properties of parallel algorithm

• Each trial is independent of the others

• Fixed number of tasks

• No communications between tasks to obtain 
independent result.
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SERIAL CODE (C++)

/* Solves a random-walk problem by a brute-force method.
*

*/

#include <iostream>
#include <string>
#include <sstream>
#include <random>
#include <cmath>

using namespace std;

main(int argc, char **argv) {

random_device rd;
mt19937 rng(rd());
uniform_int_distribution<int> choice(1,4);

int N;

if (argc != 2) {
cout<<"0,0,0\n";
return 1;

}
else {

string steps=argv[1];
stringstream ssteps;
ssteps<<steps;
ssteps>>N;

}

int x=0;
int y=0;

int direction;



SERIAL CODE (CONTINUED)

for (int i=1; i<=N; ++i) {
direction=choice(rng);
switch (direction) {

case 1:
x+=1;
break;

case 2:
x-=1;
break;

case 3:
y+=1;
break;

case 4:
y-=1;
break;

}
}

double eucDist=sqrt(x*x+y*y);
cout<<N<<","<<sqrt((double)N)<<","<<eucDist<<"\n";

return 0;

}



FORTRAN CODE
DOWNLOAD RANDOM.F90 
MODULE WITH LABS

program random_walk
use random
implicit none

integer :: nargs
character(len=10) :: ns,nexp
integer :: m, n, ntrials, nsteps, step
real, dimension(2) :: pos, move
real :: distance, avg

nargs=command_argument_count()
if ( nargs .ne. 1 ) then

write(*,*) 0, 0., 0.
stop

else
call get_command_argument(1,ns)
read(ns,'(i10)') nsteps

endif

call set_random_seed()

pos=[0.,0.]



FORTRAN CODE (CONTINUED)

avg=0.

do n=1,nsteps
step=randint(1,4)
if (step==1) then

move=[0.,1.]
else if (step==2) then

move=[0.,-1.]
else if (step==3) then

move=[1.,0.]
else

move=[-1.,0.]
endif
pos=pos+move

enddo

distance=sqrt(pos(1)**2+pos(2)**2)

write(*,*) nsteps, sqrt(real(nsteps)), distance

end program



PYTHON CODE

import numpy as np
import random
import sys

if len(sys.argv)>1:
Nsteps=int(sys.argv[1])

else:
print 0, 0., 0.
sys.exit()

pos=np.array([0,0])

moves=[np.array([0,1]),np.array([0,-1]),np.array([1,0]),np.array([-1,0])]

for n in range(Nsteps):
move=random.choice(moves)
pos+=move

distance=np.sqrt(pos[0]**2+pos[1]**2)
print Nsteps, np.sqrt(Nsteps), 
distance 



ADD MPI (ONLY C++ SHOWN)
/* Solves a random-walk problem by a brute-force method.
*
*/

#include <iostream>
#include <string>
#include <sstream>
#include <random>
#include <cmath>
#include <mpi.h>

using namespace std;

main(int argc, char **argv) {

random_device rd;
mt19937 rng(rd());
uniform_int_distribution<int> choice(1,4);

int npes, rank;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

int N;

if (argc != 2) {
cout<<rank<<":0,0,0\n";
MPI_Finalize();
return 1;

}
else {

string steps=argv[1];
stringstream ssteps;
ssteps<<steps;
ssteps>>N;

}



MPI (CONTINUED)

int x=0;
int y=0;

int direction;

for (int i=1; i<=N; ++i) {
direction=choice(rng);
switch (direction) {

case 1:
x+=1;
break;

case 2:
x-=1;
break;

case 3:
y+=1;
break;

case 4:
y-=1;
break;

}
}

double eucDist=sqrt(x*x+y*y);
cout<<rank<<":"<<N<<","<<sqrt((double)N)<<","<<eucDist<<"\n";

MPI_Finalize();

return 0;

}



RUN IT

• mpicxx –std=c++11 -o randc mpirandom_walk.cxx

• Newer compilers won't need the –std=c++11 flag

• mpirun -np 4 ./randc 1000000

0:1000000,1000,898.186

1:1000000,1000,189.589

2:1000000,1000,1235.87

3:1000000,1000,391.479

• I have to compute the average manually

• 678.781



TRY WITH -NP 8

0:1000000,1000,1011.24

5:1000000,1000,1569.2

3:1000000,1000,1753.23

2:1000000,1000,967.042

1:1000000,1000,1212.17

6:1000000,1000,418.708

7:1000000,1000,881.862

4:1000000,1000,744.641

• The first number is the rank.  Why is it jumbled?

• MPI output is nondeterministic unless forced to order 
it (which requires barriers).  



GLOBAL 
COMMUNICATIONS



TYPES OF GLOBAL 
COMMUNICATIONS

• One-to-many

• Broadcast

• Scatter

• Many-to-one

• Scatter

• Reduction

• Many-to-many

• Alltoall

• Barrier



MPI_BARRIER

• A barrier causes all processes to pause until each 
process has invoked the barrier function.

• Barriers can be used to synchronize but reduce 
parallel efficiency.

• Global communications have implicit barriers.

• C/C++: MPI_Barrier(MPI_COMM_WORLD);

• Fortran: call 
MPI_Barrier(MPI_COMM_WORLD,ierr)

• Python: MPI_COMM_WORLD.Barrier()



BROADCAST



PROTOTYPE FOR MPI_BCAST

77

int MPI_Bcast (

void          *buffer,

int count,

MPI_Datatype datatype,

int root,

MPI_Comm communicator)

• The data is sent from the root node to all other

nodes

• In the root node, buffer is read

– In all other nodes, buffer is written to



FORTRAN SYNTAX

call MPI_Bcast(vals,ncount,MPI_TYPE,root,  &                                            

MPI_COMM_WORLD,err)

• Broadcast is one-to-many

• The same values are sent to each process from root

• Scatter is similar but breaks the values into parts.
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PYTHON SYNTAX

• Pretty simple:

comm.Bcast([sendvals,MPI.DOUBLE],root=0)

• sendvals should be a Numpy array, even if it has only 

one element.
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SCATTER
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PROTOTYPE FOR MPI_SCATTER

81

int MPI_Scatter (

void          *sendbuffer,

int count,

MPI_Datatype datatype, 

void          *recvbuffer,

int count,

MPI_Datatype datatype,

int root,

MPI_Comm communicator)

• The data is sent from the root node to all other nodes. Each

process sends count items which are distributed in rank

order.

• In the root node, sendbuffer contains all the data so is

larger than recvbuffer (count*nprocs)



FORTRAN SYNTAX

call MPI_Scatter (vals,ncount,MPI_TYPE, &

rvals,ncount,MPI_TYPE,root,  &                                            

MPI_COMM_WORLD,err)
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PYTHON SYNTAX

• Both buffers should be Numpy arrays (type all in one 
line in code):

comm.Scatter([sendvals,MPI.DOUBLE],[recvals,MPI.DOUBLE,  

root=0)

83



GATHER
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PROTOTYPE FOR MPI_GATHER

85

int MPI_Gather (

void          *recvbuffer,

int count,

MPI_Datatype datatype, 

void          *sendbuffer,

int count,

MPI_Datatype datatype,

int root,

MPI_Comm communicator)

• The data is sent from each node to the root node. The data are equally

gathered from all processes and collected in rank order.

• In the root node, buffer is read. It must be declared to be large enough

to accommodate all the data.



FORTRAN SYNTAX

call MPI_Gather(vals,ncount,MPI_TYPE, &

rvals,ncount,MPI_TYPE,root,  &                                            

MPI_COMM_WORLD,err)
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PYTHON SYNTAX

• Both buffers should be Numpy arrays (type all in one 
line in code):

comm.Gather([sendvals,MPI.DOUBLE],[recvals,MPI.DOUBLE,  

root=0)
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ALLGATHER

88



ALLGATHER SYNTAX

• Allgather is identical to gather but omitting the root 
variable.  Data are gathered on process 0 then the 
accumulated buffer is broadcast to all other 
processes.

• Use allgather rather than gather/bcast if all data 
need to know the total.

MPI_Allgather(&svals,ncount,MPI_TYPE,

&rvals,ncount,MPI_TYPE,                                            

MPI_COMM_WORLD)



PROTOTYPE OF  MPI_REDUCE
(C)
int MPI_Reduce (

void *operand,/* addr of 1st reduction element */
void *result, /* addr of 1st reduction result */
int count,    /* reductions to perform */
MPI_Datatype type, /* type of elements */
MPI_Op operator, /* reduction operator */

int root,   /* process getting result(s) */

MPI_Comm comm /* communicator */

)
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PROTOTYPE OF  MPI_REDUCE
(FORTRAN)

• MPI_REDUCE(sendbuf, recvbuf, count, 
datatype, op, root, comm, ierr)

• integer count, datatype, op, root, 
comm, ierr

• <type> sendbuf(<length>), 
recvbuf(<length>)

• Example:
call MPI_REDUCE(myval,val,1,MPI_REAL,    &

MPI_SUM,0,MPI_COMM_WORLD,ierr)
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PROTOTYPE OF  MPI_REDUCE
(PYTHON)

• Reduce (sendobj, recvobjc, operation, 
root)

• Note that the lower-case ‘reduce’ handles pickled objects; use 
the title-case ‘Reduce’ with NumPy arrays.

• Type all in one line (PowerPoint and Python don't get along).

• MPI.COMM_WORLD.Reduce
([hits,MPI.DOUBLE], 
[total_hits,MPI.DOUBLE], op=MPI.SUM, 
root=0)

• Both hits and total_hits are initalized numpy arrays of one 
element.

• total_hits can have any value (as it’s being overwritten), but it must 
be initialized.

• When creating a numpy array, by default it creates it as a double.

• The number of elements that are being reduced is based on 
the size of the hits and total_hits arrays.
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MPI_DATATYPE OPTIONS FOR 

C
• MPI_CHAR

• MPI_DOUBLE

• MPI_FLOAT

• MPI_INT

• MPI_LONG

• MPI_LONG_DOUBLE

• MPI_SHORT

• MPI_UNSIGNED_CHAR

• MPI_UNSIGNED

• MPI_UNSIGNED_LONG

• MPI_UNSIGNED_SHORT
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MPI_DATATYPE OPTIONS FOR 

FORTRAN

• MPI_CHARACTER

• MPI_DOUBLE_PRECISION

• MPI_REAL

• MPI_INTEGER

• MPI_LOGICAL

• MPI_COMPLEX

• MPI_DOUBLE_COMPLEX
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MPI_OP OPTIONS (C AND 

FORTRAN)
• MPI_BAND

• MPI_BOR

• MPI_BXOR

• MPI_LAND

• MPI_LOR

• MPI_LXOR

• MPI_MAX

• MPI_MAXLOC

• MPI_MIN

• MPI_MINLOC

• MPI_PROD

• MPI_SUM
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ENHANCING THE 
RANDOM-WALK 
PROGRAM
I'd rather not do that average myself

Incorporate sum-reduction into program

Reduction is a collective communication
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OUR CALL TO MPI_REDUCE
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MPI_Reduce (&eucDist,

&total,

1,

MPI_DOUBLE,

MPI_SUM,

0,

MPI_COMM_WORLD);
Only process 0

will get the result

if (rank==0) {

double avg=total/npes;

cout<<N<<","<<sqrt((double)N)<<","<<avg<<"\n";

}



IMPROVED VERSION
/* Solves a random-walk problem by a brute-force method.
*

*/

#include <iostream>
#include <string>
#include <sstream>
#include <random>
#include <cmath>
#include <mpi.h>

using namespace std;

main(int argc, char **argv) {

random_device rd;
mt19937 rng(rd());
uniform_int_distribution<int> choice(1,4);

int npes, rank;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

int N;

if (argc != 2) {
if (rank==0) {

cout<<":0,0,0\n";
}
MPI_Finalize();
return 0;

}
else {

string steps=argv[1];
stringstream ssteps;
ssteps<<steps;
ssteps>>N;

}



REDUCTION (CONTINUED)
int x=0;

int y=0;

int direction;

for (int i=1; i<=N; ++i) {

direction=choice(rng);

switch (direction) {

case 1:

x+=1;

break;

case 2:

x-=1;

break;

case 3:

y+=1;

break;

case 4:

y-=1;

break;

}

}

double eucDist=sqrt(x*x+y*y);

double total;

MPI_Reduce(&eucDist,&total,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);

if (rank==0) {

double avg=total/npes;

cout<<N<<","<<sqrt((double)N)<<","<<avg<<"\n";

}

MPI_Finalize();

return 0;

}



RESULT

• mpirun -np 8 ./randc 100000

• 100000,316.228,252.55



BENCHMARKING THE 
PROGRAM

• MPI_Barrier – barrier synchronization

• MPI_Wtick – timer resolution

• MPI_Wtime – current time

• Weak scaling: N steps on each process
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BENCHMARKING CODE
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double elapsed_time;

…

MPI_Init (&argc, &argv);

…

elapsed_time=MPI_Wtime()-elapsed_time;

…

MPI_Reduce (…);

elapsed_time += MPI_Wtime();

Generally we look only at time from the root process.



JOB SCRIPT

#!/bin/bash

#SBATCH -A rivanna-training

#SBATCH -t 00:10:00

#SBATCH -p parallel

#SBATCH -N 1

#SBATCH --ntasks-per-node=20

module load gcc

module load openmpi

srun ./randc 100000000



BENCHMARKING RESULTS
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Processors Time (sec)

1 60.423

5 12.0012

10 6.00945

20 3.01335

Running the random walk for 1,000,000,000 steps
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