PyTorch Experimentation and Project Setup
Structuring a PyTorch Project
A well-organized project structure makes debugging, collaboration, and experimentation easier.
pytorch_project/
├── data/ # Dataset files
├── logs/ # TensorBoard/WandB logs
├── models/ # Trained models
├── notebooks/ # Jupyter notebooks
├── src/ # Source code
│ ├── dataset.py # Custom dataset loaders
│ ├── model.py # Neural network architectures
│ ├── train.py # Training loop
│ ├── evaluate.py # Model evaluation
│ ├── utils.py # Utility functions (checkpointing, logging)
├── requirements.txt # Dependencies
├── config.yaml # Hyperparameter config
├── train.py # Main training script
├── slurm_train.sh # SLURM script for HPC training
└── README.md # Documentation
Managing Experiments with Logging Frameworks
Tracking experiments is essential for understanding model performance.
Using TensorBoard for Monitoring TensorBoard is Tensorflow’s visualization toolkit. It is compatible with PyTorch and enbles you to keep track of your experiments' metrics like lossand accuracy and easily visualize them. For more information visit: https://www.tensorflow.org/tensorboard
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs/experiment_1")
# Log loss values
for epoch in range(10):
loss = 0.1 * epoch # Example loss
writer.add_scalar("Loss/train", loss, epoch)
writer.close()
To visualize logs, run:
tensorboard --logdir=logs
Using Weights & Biases for Experiment Tracking. Learn More
import wandb
wandb.init(project="pytorch-experiments")
for epoch in range(10):
wandb.log({"loss": 0.1 * epoch})
Creating Reproducible Experiments
Ensure reproducibility by setting random seeds.
import torch
import random
import numpy as np
def set_seed(seed=42):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
set_seed(42)
Ensuring Deterministic Data Pipelines
In PyTorch’s DataLoader, the shuffle parameter controls whether the data is randomly shuffled before each epoch. When shuffle is set to True, the data is reshuffled at the beginning of each epoch, ensuring that the model sees the data in a different order during training. Use shuffle for training sets and ensure that it is set to False for test and validation sets.
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=32, shuffle=False)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False)